1
|
D'Aragon F, Selzner M, Breau R, Masse MH, Lamontagne F, Masse M, Chassé M, Carrier FM, Cardinal H, Chaudhury P, Weiss M, Lauzier F, Turgeon AF, Frenette AJ, Bolduc B, Ducharme A, Lamarche C, Couture E, Holdsworth S, Bertholz L, Talbot H, Slessarev M, Luke P, Boyd JG, Shamseddin MK, Burns KEA, Zaltzman J, English S, Knoll G, Dhanani S, Healey A, Hanna S, Rochwerg B, Oczkowski SJW, Treleaven D, Meade M. Calcineurin Inhibitor in NEuRoloGically deceased donors to decrease kidney delayed graft function study: study protocol of the CINERGY Pilot randomised controlled trial. BMJ Open 2024; 14:e086777. [PMID: 38871657 PMCID: PMC11177676 DOI: 10.1136/bmjopen-2024-086777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Most solid organ transplants originate from donors meeting criteria for death by neurological criteria (DNC). Within the organ donor, physiological responses to brain death increase the risk of ischaemia reperfusion injury and delayed graft function. Donor preconditioning with calcineurin inhibition may reduce this risk. METHODS AND ANALYSIS We designed a multicentre placebo-controlled pilot randomised trial involving nine organ donation hospitals and all 28 transplant programmes in the Canadian provinces of Ontario and Québec. We planned to enrol 90 DNC donors and their approximately 324 organ recipients, totalling 414 participants. Donors receive an intravenous infusion of either tacrolimus 0.02 mg/kg over 4 hours prior to organ retrieval, or a matching placebo, while monitored in an intensive care unit for any haemodynamic changes during the infusion. Among all study organ recipients, we record measures of graft function for the first 7 days in hospital and we will record graft survival after 1 year. We examine the feasibility of this trial with respect to the proportion of all eligible donors enrolled and the proportion of all eligible transplant recipients consenting to receive a CINERGY organ transplant and to allow the use of their health data for study purposes. We will report these feasibility outcomes as proportions with 95% CIs. We also record any barriers encountered in the launch and in the implementation of this trial with detailed source documentation. ETHICS AND DISSEMINATION We will disseminate trial results through publications and presentations at participating sites and conferences. This study has been approved by Health Canada (HC6-24-c241083) and by the Research Ethics Boards of all participating sites and in Québec (MP-31-2020-3348) and Clinical Trials Ontario (Project #3309). TRIAL REGISTRATION NUMBER NCT05148715.
Collapse
Affiliation(s)
- Frederick D'Aragon
- Department of Anesthesiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Markus Selzner
- Multi-Organ Transplant Program, Toronto General Hospital, Toronto, Quebec, Canada
- Department of General Surgery, University of Toronto and Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ruth Breau
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Marie-Hélène Masse
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Francois Lamontagne
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Masse
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Michael Chassé
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - François-Martin Carrier
- Department of Anesthesiology, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Héloïse Cardinal
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Prosanto Chaudhury
- Department of Surgery and Oncology, McGill University, Montreal, Québec, Canada
- Transplant Québec, Montréal, Québec, Canada
| | - Matthew Weiss
- Transplant Québec, Montreal, Québec, Canada
- Population Health and Optimal Health Practives Research Unit (Trauma - Emergency - Critical Care Medicine), Centre de Recherche du CHU de Québec - Université Laval, Quebec, Quebec, Canada
| | - Francois Lauzier
- Population Health and Optimal Health Practives Research Unit (Trauma - Emergency - Critical Care Medicine), Centre de Recherche du CHU de Québec - Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Université Laval, Québec City, Québec, Canada
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, Québec City, Québec, Canada
| | - Alexis F Turgeon
- Population Health and Optimal Health Practives Research Unit (Trauma - Emergency - Critical Care Medicine), Centre de Recherche du CHU de Québec - Université Laval, Quebec, Quebec, Canada
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, Québec City, Québec, Canada
| | | | - Brigitte Bolduc
- Department of Pharmacy, Centre integre universitaire de sante et de services sociaux de l'Estrie Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anique Ducharme
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
- Montreal Heart Institute, Montreal, Québec, Canada
| | - Caroline Lamarche
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
- Hôpital Maisonneuve-Rosemont Research Institute, Montréal, Québec, Canada
| | - Etienne Couture
- Department of Anesthesiology and Critical Care, Quebec Heart & Lung Institute, Université Laval, Quebec, Quebec, Canada
| | - Sandra Holdsworth
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada
| | - Liz Bertholz
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada
| | - Heather Talbot
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada
| | - Marat Slessarev
- Department of Medicine, Division of Critical Care, Western University, London, Ontario, Canada
| | - Patrick Luke
- Department of Surgery, Division of Urology, Western University, London, Ontario, Canada
| | - John Gordon Boyd
- Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
- Department of Critical Care Medicine, Queen's University, Kingston, Ontario, Canada
| | - M Khaled Shamseddin
- Department of Medicine, Division of Nephrology, Queen's University, Kingston, Ontario, Canada
| | - Karen E A Burns
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jeffrey Zaltzman
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shane English
- Division of Critical Care, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Greg Knoll
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sonny Dhanani
- Department of Pediatrics, Division of Critical Care, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew Healey
- Department of Medicine, Division of Emergency Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Steven Hanna
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Bram Rochwerg
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Darin Treleaven
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maureen Meade
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Tomioka Y, Sugimoto S, Shiotani T, Matsubara K, Choshi H, Ishihara M, Tanaka S, Miyoshi K, Otani S, Toyooka S. Long-term outcomes of lung transplantation requiring renal replacement therapy: A single-center experience. Respir Investig 2024; 62:240-246. [PMID: 38241956 DOI: 10.1016/j.resinv.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Life-long immunosuppressive therapy after lung transplantation (LT) may lead to end-stage renal disease (ESRD), requiring renal replacement therapy (RRT). We aimed to investigate the characteristics and long-term outcomes of patients undergoing LT and requiring RRT. METHODS This study was a single-center, retrospective cohort study. The patients were divided into the RRT (n = 15) and non-RRT (n = 170) groups. We summarized the clinical features of patients in the RRT group and compared patient characteristics, overall survival, and chronic lung allograft dysfunction (CLAD)-free survival between the two groups. RESULTS The cumulative incidences of ESRD requiring RRT after LT at 5, 10, and 15 years were 0.8 %, 7.6 %, and 25.2 %, respectively. In the RRT group, all 15 patients underwent hemodialysis but not peritoneal dialysis, and two patients underwent living-donor kidney transplantation. The median follow-up period was longer in the RRT group than in the non-RRT group (P < 0.001). The CLAD-free survival and overall survival did not differ between the two groups. The 5-year survival rate even after the initiation of hemodialysis was 53.3 %, and the leading cause of death in the RRT group was infection. CONCLUSIONS Favorable long-term outcomes can be achieved by RRT for ESRD after LT.
Collapse
Affiliation(s)
- Yasuaki Tomioka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Toshio Shiotani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kei Matsubara
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Haruki Choshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Megumi Ishihara
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shinji Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of Cardiovascular and Thoracic Surgery, Ehime University Medical School, 454 Shizugawa, Toon, Ehime 791-0295, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
3
|
Kubo Y, Sugimoto S, Shiotani T, Matsubara K, Hashimoto K, Tanaka S, Shien K, Suzawa K, Miyoshi K, Yamamoto H, Okazaki M, Toyooka S. Percentage of low attenuation area on computed tomography detects chronic lung allograft dysfunction, especially bronchiolitis obliterans syndrome, after bilateral lung transplantation. Clin Transplant 2023; 37:e15077. [PMID: 37461238 DOI: 10.1111/ctr.15077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 09/18/2023]
Abstract
INTRODUCTION The percentage of low attenuation area (%LAA) on computed tomography (CT) is useful for evaluating lung emphysema, and higher %LAA was observed in patients with chronic lung allograft dysfunction (CLAD). This study investigated the relationship between the %LAA and the development of CLAD after bilateral lung transplantation (LT). METHODS We conducted a single-center retrospective study of 75 recipients who underwent bilateral LT; the recipients were divided into a CLAD group (n = 30) and a non-CLAD group (n = 45). The %LAA was calculated using CT and compared between the two groups from 4 years before to 4 years after the diagnosis of CLAD. The relationships between the %LAA and the percent baseline values of the pulmonary function test parameters were also calculated. RESULTS The %LAA was significantly higher in the CLAD group than in the non-CLAD group from 2 years before to 2 years after the diagnosis of CLAD (P < .05). In particular, patients with bronchiolitis obliterans syndrome (BOS) exhibited significant differences even from 4 years before to 4 years after diagnosis (P < .05). Significant negative correlations between the %LAA and the percent baseline values of the forced expiratory volume in 1 s (r = -.36, P = .0031), the forced vital capacity (r = -.27, P = .027), and the total lung capacity (r = -.40, P < .001) were seen at the time of CLAD diagnosis. CONCLUSION The %LAA on CT was associated with the development of CLAD and appears to have the potential to predict CLAD, especially BOS, after bilateral LT.
Collapse
Affiliation(s)
- Yujiro Kubo
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshio Shiotani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kei Matsubara
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kohei Hashimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
4
|
Shiotani T, Sugimoto S, Yamamoto H, Miyoshi K, Otani S, Suzawa K, Yamamoto H, Okazaki M, Yamane M, Toyooka S. Emphysematous changes and lower levels of plasma irisin are associated with bronchiolitis obliterans syndrome after bilateral living-donor lobar lung transplantation. Surg Today 2021; 52:294-305. [PMID: 34251508 DOI: 10.1007/s00595-021-02339-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Decreased irisin levels may be associated with the development of emphysema. Similarly, emphysematous changes may develop in patients with chronic lung allograft dysfunction (CLAD) after living-donor lobar lung transplantation (LDLLT). We investigated the severity of emphysematous changes and the relationship between irisin levels and CLAD after bilateral LDLLT and cadaveric lung transplantation (CLT). METHODS The subjects of this retrospective study were 59 recipients of bilateral LDLLT (n = 31) or CLT (n = 28), divided into a non-CLAD group (n = 41), a LDLLT-CLAD group (n = 11), and a CLT-CLAD group (n = 7). We compared the severity of emphysematous changes, the skeletal muscle mass, and the plasma irisin levels among the groups. RESULTS The emphysematous changes were significantly more severe in the LDLLT-CLAD and CLT-CLAD groups (p = 0.046 and 0.036), especially in patients with bronchiolitis obliterans syndrome (BOS), than in the non-CLAD group. Although the skeletal muscle mass was similar in all the groups, the plasma irisin levels were significantly lower in the LDLLT-CLAD group (p = 0.022), especially in the patients with BOS after LDLLT, than in the non-CLAD group. CONCLUSION Emphysematous changes and lower levels of plasma irisin were associated with CLAD, especially in patients with BOS, after bilateral LDLLT.
Collapse
Affiliation(s)
- Toshio Shiotani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Seiichiro Sugimoto
- Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Haruchika Yamamoto
- Department of General Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Shinji Otani
- Department of General Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Masaomi Yamane
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
5
|
May HP, Bartoo GT, Wolf RC, Shah MV, Litzow MR, Hogan WJ, Alkhateeb H. Use of sublingual tacrolimus in adults undergoing hematopoietic cell transplant: A pilot study. J Oncol Pharm Pract 2021; 28:387-394. [PMID: 33593135 DOI: 10.1177/1078155221995230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Orally administered tacrolimus is widely used in hematopoietic cell transplant patients, but multiple clinical situations may arise rendering oral administration infeasible. The undesirable sequelae of intravenous administration, including toxicity, challenges with administration and cost call for innovative solutions to conserve existing supply and optimize safety and efficacy of medication delivery. We sought to demonstrate feasibility of sublingual tacrolimus use and estimate a sublingual-to-oral (SL:PO) conversion ratio in the hematopoietic cell transplant setting. METHODS Ten adults undergoing allogeneic hematopoietic cell transplant received tacrolimus 0.04 mg/kg/dose twice daily. Initial doses were given via sublingual route and a steady state trough level was collected after 4 consecutive doses. Participants were then switched to oral tacrolimus, the dose adjusted for a goal trough 8-12ng/mL, and another steady state trough was drawn. Total daily dose was divided by trough concentration for each route to determine the dosing ratio of SL:PO. RESULTS Median trough level following sublingual administration was 11.3 ng/mL. Three of these were within goal, 3 were low (4.7-6.4 ng/mL) and 4 were elevated (15.9-18.6 ng/mL). Median SL:PO ratio was 1.02. In 5 participants the SL:PO ratio was <1 (range 0.57-0.94) and in 5 the ratio was ≥1 (range 1.10-1.92). No significant barriers or intolerance to sublingual tacrolimus use were noted. CONCLUSIONS Results demonstrate reliable absorption with sublingual tacrolimus use in patients undergoing hematopoietic cell transplant. Sublingual administration may allow for avoidance of the undesirable complications of IV tacrolimus, such as increased toxicities, required hospitalization for continuous infusion, risk of dose conversion and dilution errors and increased cost.Trial Registry name: Use of Sublingual Tacrolimus in Adult Blood and Marrow Transplant Patients, NCT04041219https://clinicaltrials.gov/ct2/show/NCT04041219?term=NCT04041219&draw=2&rank=1.
Collapse
Affiliation(s)
- Heather P May
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | | | - Robert C Wolf
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Mithun V Shah
- Division of Hematology and Bone Marrow Transplant, Mayo Clinic, Rochester, MN, USA
| | - Mark R Litzow
- Division of Hematology and Bone Marrow Transplant, Mayo Clinic, Rochester, MN, USA
| | - William J Hogan
- Division of Hematology and Bone Marrow Transplant, Mayo Clinic, Rochester, MN, USA
| | - Hassan Alkhateeb
- Division of Hematology and Bone Marrow Transplant, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Lung perfusion scintigraphy to detect chronic lung allograft dysfunction after living-donor lobar lung transplantation. Sci Rep 2020; 10:10595. [PMID: 32601414 PMCID: PMC7324574 DOI: 10.1038/s41598-020-67433-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/09/2020] [Indexed: 01/26/2023] Open
Abstract
Because chronic lung allograft dysfunction (CLAD) develops predominantly on one side after bilateral living-donor lobar lung transplantation (LDLLT), lung perfusion scintigraphy (Q-scinti) was expected to show a perfusion shift to the contralateral unaffected lung with the development of CLAD. Our study examined the potential usefulness of Q-scinti in the diagnosis of CLAD after bilateral LDLLT. We conducted a single-center retrospective cohort study of 58 recipients of bilateral LDLLT. The unilateral shift values on Q-scinti were calculated and compared between the CLAD group (N = 27) and the non-CLAD group (N = 31) from 5 years before to 5 years after the diagnosis of CLAD. The unilateral shift values in Q-scinti were significantly higher in the CLAD group than in the non-CLAD group from 5 years before the diagnosis of CLAD to 5 years after the diagnosis (P < 0.05). The unilateral shift values in Q-scinti were significantly correlated with the percent baseline values of the forced expiratory volume in 1 s (P = 0.0037), the total lung capacity (P = 0.0028), and the forced vital capacity (P = 0.00024) at the diagnosis of CLAD. In patients developing unilateral CLAD after bilateral LDLLT, Q-scinti showed a unilateral perfusion shift to the contralateral unaffected lung. Thus, Q-scinti appears to have the potential to predict unilateral CLAD after bilateral LDLLT.
Collapse
|
7
|
Impact of chronic lung allograft dysfunction, especially restrictive allograft syndrome, on the survival after living-donor lobar lung transplantation compared with cadaveric lung transplantation in adults: a single-center experience. Surg Today 2019; 49:686-693. [DOI: 10.1007/s00595-019-01782-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 02/07/2019] [Indexed: 11/27/2022]
|
8
|
Feasibility of lung transplantation from donors mechanically ventilated for prolonged periods. Surg Today 2018; 49:254-260. [DOI: 10.1007/s00595-018-1730-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/27/2018] [Indexed: 11/27/2022]
|
9
|
Tanaka S, Sugimoto S, Kurosaki T, Miyoshi K, Otani S, Suzawa K, Hashida S, Yamane M, Oto T, Toyooka S. Donor-derived cell-free DNA is associated with acute rejection and decreased oxygenation in primary graft dysfunction after living donor-lobar lung transplantation. Sci Rep 2018; 8:15366. [PMID: 30337621 PMCID: PMC6193971 DOI: 10.1038/s41598-018-33848-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023] Open
Abstract
Donor-derived cell-free DNA (dd-cf-DNA) has been shown to be an informative biomarker of rejection after lung transplantation (LT) from deceased donors. However, in living-donor lobar LT, because small grafts from blood relatives are implanted with short ischemic times, the detection of dd-cf-DNA might be challenging. Our study was aimed at examining the role of dd-cf-DNA measurement in the diagnosis of primary graft dysfunction and acute rejection early after living-donor lobar LT. Immediately after LT, marked increase of the plasma dd-cf-DNA levels was noted, with the levels subsequently reaching a plateau with the resolution of primary graft dysfunction. Increased plasma levels of dd-cf-DNA were significantly correlated with decreased oxygenation immediately (p = 0.022) and at 72 hours (p = 0.046) after LT. Significantly higher plasma dd-cf-DNA levels were observed in patients with acute rejection (median, 12.0%) than in those with infection (median, 4.2%) (p = 0.028) or in a stable condition (median, 1.1%) (p = 0.001). Thus, measurement of the plasma levels of dd-cf-DNA might be useful to monitor the severity of primary graft dysfunction, and plasma dd-cf-DNA could be a potential biomarker for the diagnosis of acute rejection after LT.
Collapse
Affiliation(s)
- Shin Tanaka
- Department of General Thoracic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Takeshi Kurosaki
- Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinji Otani
- Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinsuke Hashida
- Department of General Thoracic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaomi Yamane
- Department of General Thoracic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takahiro Oto
- Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
10
|
|
11
|
Sugimoto S, Yamane M, Otani S, Kurosaki T, Okahara S, Hikasa Y, Toyooka S, Kobayashi M, Oto T. Airway complications have a greater impact on the outcomes of living-donor lobar lung transplantation recipients than cadaveric lung transplantation recipients. Surg Today 2018; 48:848-855. [PMID: 29680912 DOI: 10.1007/s00595-018-1663-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/02/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE Airway complications (ACs) after living-donor lobar lung transplantation (LDLLT) could have different features from those after cadaveric lung transplantation (CLT). We conducted this study to compare the characteristics of ACs after LDLLT vs. those after CLT and investigate their impact on outcomes. METHODS We reviewed, retrospectively, data on 163 recipients of lung transplantation, including 83 recipients of LDLLT and 80 recipients of CLT. RESULTS The incidence of ACs did not differ between LDLLT and CLT. The initial type of AC after LDLLT was limited to stenosis in all eight patients, whereas that after CLT consisted of stenosis in three patients and necrosis in ten patients (p = 0.0034). ACs after LDLLT necessitated significantly earlier initiation of treatment than those after CLT (p = 0.032). The overall survival rate of LDLLT recipients with an AC was significantly lower than that of those without an AC (p = 0.030), whereas the overall survival rate was comparable between CLT recipients with and those without ACs (p = 0.25). CONCLUSION ACs after LDLLT, limited to bronchial stenosis, require significantly earlier treatment and have a greater adverse impact on survival than ACs after CLT.
Collapse
Affiliation(s)
- Seiichiro Sugimoto
- Department of General Thoracic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Masaomi Yamane
- Department of General Thoracic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinji Otani
- Department of Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Takeshi Kurosaki
- Department of Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Shuji Okahara
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, Okayama, Japan
| | - Yukiko Hikasa
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Motomu Kobayashi
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, Okayama, Japan
| | - Takahiro Oto
- Department of Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| |
Collapse
|