1
|
Fujimoto N, Mukhanbetzhanov N, Zhetkenev S, Chulenbayeva L, Fazylov T, Mukhortov M, Sato H, Zhumadilov K, Stepanenko V, Kaprin A, Ivanov S, Shegay P, Hoshi M, Kushugulova A. Gene Expression Changes in the Spleen, Lungs, and Liver of Wistar Rats Exposed to β-Emitted 31SiO 2 Particles. Int J Mol Sci 2025; 26:2693. [PMID: 40141336 PMCID: PMC11942150 DOI: 10.3390/ijms26062693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
To understand the biological effects of residual radioactivity after the atomic bomb explosion in Hiroshima and Nagasaki, we previously investigated the effects of 56Mn, a major residual radioisotope. Our rat study demonstrated that inhalation exposure to 56MnO2 microparticles affected gene expression in the lungs, testes, and liver, despite the low radiation doses. Because 56Mn is a β- and γ-emitter, the differential effects between β- and γ-rays should be clarified. In this study, 31Si, a β-emitter with a radioactive half-life similar to that of 56Mn, was used to determine its effects. Male Wistar rats were exposed to sprayed neutron-activated 31SiO2 microparticles, stable SiO2 microparticles, or X-rays. The animals were examined on days 3 and 14 after irradiation. The expression of radiation-inducible marker genes, including Ccng1, Cdkn1a, and Phlda3, was measured in the spleen, lungs, and liver. Furthermore, the expressions of pathophysiological marker genes, including Aqp1, Aqp5, and Smad7 in the lungs and Cth, Ccl2, and Nfkb1 in the liver, were determined. Impacts of 31SiO2 exposure were observed mainly in the liver, where the expression of Cth markedly increased on post-exposure days 3 and 14. Our data suggest that internal exposure to β-emitted microparticles has significant biological effects and its possible roles as residual radiation after atomic bombing.
Collapse
Affiliation(s)
- Nariaki Fujimoto
- Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Nurislam Mukhanbetzhanov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (N.M.); (S.Z.); (L.C.); (A.K.)
| | - Sanzhar Zhetkenev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (N.M.); (S.Z.); (L.C.); (A.K.)
| | - Laura Chulenbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (N.M.); (S.Z.); (L.C.); (A.K.)
| | - Timur Fazylov
- B. Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Tole Bi Street 94, Almaty 050012, Kazakhstan;
| | - Mikhail Mukhortov
- Institute of Nuclear Physics of the Ministry of Energy of the Republic of Kazakhstan, Almaty 050032, Kazakhstan;
| | - Hitoshi Sato
- Faculty of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan;
| | - Kassym Zhumadilov
- Department of Nuclear Physics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Valeriy Stepanenko
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, Kaluga 249036, Russia; (V.S.); (S.I.)
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva Str., 4., Obninsk, Kaluga 249036, Russia; (A.K.); (P.S.)
- Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
- P.A. Hertzen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky Drive 3, Moscow 125284, Russia
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, Kaluga 249036, Russia; (V.S.); (S.I.)
- Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva Str., 4., Obninsk, Kaluga 249036, Russia; (A.K.); (P.S.)
| | - Masaharu Hoshi
- The Center for Peace, Hiroshima University, Higashisenda-machi 1-1-89, Naka-ku, Hiroshima 730-0053, Japan;
| | - Almagul Kushugulova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (N.M.); (S.Z.); (L.C.); (A.K.)
| |
Collapse
|
2
|
Hariharan S, Seethashankar S, Kannan N, Christopher S, A. AT, Raavi V, Easwaramoorthy V, Murugaiyan P, Perumal V. Enhanced γ-H2AX Foci Frequency and Altered Gene Expression in Participants Exposed to Ionizing Radiation During I-131 Nuclear Medicine Procedures. Nucl Med Mol Imaging 2024; 58:341-353. [PMID: 39308490 PMCID: PMC11415327 DOI: 10.1007/s13139-024-00872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose Ionizing radiation-based technologies are extensively used in the diagnosis and treatment of diseases. While utilizing the technologies, exposure to a certain amount of radiation is unavoidable. Data can be obtained from participants who received radiation during medical imaging and therapeutic purposes to predict the effects of low-dose radiation. Methods To understand the effects of low-dose radiation, participants (n = 22) who received radioactive I-131 for scan/therapy were used as a model in this study. Blood samples were drawn pre- and post-administration of I-131. Biological effects were measured using markers of DNA damage (γ-H2AX, micronucleus (MN), and chromosomal aberrations (CA)) and response to damage through gene expression changes (ATM, CDKN1A, DDB2, FDXR, and PCNA) in blood samples. Results Mean frequency of γ-H2AX foci in pre-samples was 0.28 ± 0.16, and post-samples were 1.03 ± 0.60. γ-H2AX foci frequency obtained from post-samples showed significant (p < 0.0001) and a heterogeneous increase in all the participants (received I-131 for scan/therapy) when compared to pre-samples. A significant increase (p < 0.0001) in MN and CA frequency was also observed in participants who received the I-131 therapy. Gene expression analysis indicates that all genes (ATM, CDKN1A, DDB2, FDXR, and PCNA) were altered in post-samples, although with varying degrees, suggesting that the cellular responses to DNA damage, such as damage repair, cell cycle regulation to aid in repair and apoptosis are increased, which priority is given to repair, followed by apoptosis. Conclusion The results of this study indicate that the participants who received I-131 (low doses of β- and γ-radiation) can produce substantial biological effects.
Collapse
Affiliation(s)
- Shruti Hariharan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Smruthi Seethashankar
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Nandhini Kannan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Sathesh Christopher
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Aishwarya T. A.
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, 563 103 Karnataka India
| | - Venkatachalapathy Easwaramoorthy
- Department of Nuclear Medicine & PET/CT, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Palani Murugaiyan
- Department of Nuclear Medicine & PET/CT, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| |
Collapse
|
3
|
Abishev Z, Ruslanova B, Apbassova S, Shabdarbayeva D, Chaizhunussova N, Dyusupov A, Azhimkhanov A, Zhumadilov K, Stepanenko V, Ivanov S, Shegay P, Kaprin A, Hoshi M, Fujimoto N. Effects of Radioactive 56MnO 2 Particle Inhalation on Mouse Lungs: A Comparison between C57BL and BALB/c. Int J Mol Sci 2023; 24:17605. [PMID: 38139433 PMCID: PMC10743477 DOI: 10.3390/ijms242417605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The effects of residual radiation from atomic bombs have been considered to be minimal because of its low levels of external radioactivity. However, studies involving atomic bomb survivors exposed to only residual radiation in Hiroshima and Nagasaki have indicated possible adverse health effects. Thus, we investigated the biological effects of radioactive dust of manganese dioxide 56 (56MnO2), a major radioisotope formed in soil by neutron beams from a bomb. Previously, we investigated C57BL mice exposed to 56MnO2 and found pulmonary gene expression changes despite low radiation doses. In this study, we examined the effects in a radiation-sensitive strain of mice, BALB/c, and compared them with those in C57BL mice. The animals were exposed to 56MnO2 particles at two radioactivity levels and examined 3 and 65 days after exposure. The mRNA expression of pulmonary pathophysiology markers, including Aqp1, Aqp5, and Smad7, and radiation-sensitive genes, including Bax, Phlda3, and Faim3, was determined in the lungs. The radiation doses absorbed in the lungs ranged from 110 to 380 mGy; no significant difference was observed between the two strains. No exposure-related pathological changes were observed in the lungs of any group. However, the mRNA expression of Aqp1 was significantly elevated in C57BL mice but not in BALB/c mice 65 days after exposure, whereas no changes were observed in external γ-rays (2 Gy) in either strain. In contrast, Faim3, a radiation-dependently downregulated gene, was reduced by 56MnO2 exposure in BALB/c mice but not in C57BL mice. These data demonstrate that inhalation exposure to 56MnO2 affected the expression of pulmonary genes at doses <380 mGy, which is comparable to 2 Gy of external γ-irradiation, whereas the responses differed between the two mouse strains.
Collapse
Affiliation(s)
- Zhaslan Abishev
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan; (Z.A.); (B.R.); (S.A.); (D.S.)
| | - Bakhyt Ruslanova
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan; (Z.A.); (B.R.); (S.A.); (D.S.)
| | - Saulesh Apbassova
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan; (Z.A.); (B.R.); (S.A.); (D.S.)
| | - Dariya Shabdarbayeva
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan; (Z.A.); (B.R.); (S.A.); (D.S.)
| | | | - Altai Dyusupov
- Rector’s Office, Semey Medical University, Semey 071400, Kazakhstan;
| | - Almas Azhimkhanov
- National Nuclear Center of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan;
| | - Kassym Zhumadilov
- Department of Nuclear Physics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Valeriy Stepanenko
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia; (V.S.); (S.I.)
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia; (V.S.); (S.I.)
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (P.S.); (A.K.)
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (P.S.); (A.K.)
| | - Masaharu Hoshi
- The Center for Peace, Hiroshima University, Hiroshima 730-0053, Japan;
| | - Nariaki Fujimoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-0037, Japan
| |
Collapse
|
4
|
Staneva D, Dimitrova N, Popov B, Alexandrova A, Georgieva M, Miloshev G. Haberlea rhodopensis Extract Tunes the Cellular Response to Stress by Modulating DNA Damage, Redox Components, and Gene Expression. Int J Mol Sci 2023; 24:15964. [PMID: 37958947 PMCID: PMC10647427 DOI: 10.3390/ijms242115964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Ionizing radiation (IR) and reactive oxygen species (ROS)-induced oxidative stress can cause damage to cellular biomolecules, including DNA, proteins, and lipids. These harmful effects can compromise essential cellular functions and significantly raise the risk of metabolic dysfunction, accumulation of harmful mutations, genome instability, cancer, accelerated cellular senescence, and even death. Here, we present an investigation of HeLa cancer cells' early response to gamma IR (γ-IR) and oxidative stress after preincubation of the cells with natural extracts of the resurrection plant Haberlea rhodopensis. In light of the superior protection offered by plant extracts against radiation and oxidative stress, we investigated the cellular defence mechanisms involved in such protection. Specifically, we sought to evaluate the molecular effects of H. rhodopensis extract (HRE) on cells subjected to genotoxic stress by examining the components of the redox pathway and quantifying the transcription levels of several critical genes associated with DNA repair, cell cycle regulation, and apoptosis. The influence of HRE on genome integrity and the cell cycle was also studied via comet assay and flow cytometry. Our findings demonstrate that HREs can effectively modulate the cellular response to genotoxic and oxidative stress within the first two hours following exposure, thereby reducing the severity of such stress. Furthermore, we observed the specificity of genoprotective HRE doses depending on the source of the applied genotoxic stress.
Collapse
Affiliation(s)
- Dessislava Staneva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.S.); (M.G.)
| | - Neli Dimitrova
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (N.D.); (B.P.)
| | - Borislav Popov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (N.D.); (B.P.)
| | - Albena Alexandrova
- Laboratory of Free Radical Processes, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.S.); (M.G.)
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.S.); (M.G.)
| |
Collapse
|
5
|
Li S, Cai TJ, Lu X, Tian M, Liu QJ. Effects of cyclophosphamide and mitomycin C on radiation-induced transcriptional biomarkers in human lymphoblastoid cells. Int J Radiat Biol 2023; 99:1948-1960. [PMID: 37530590 DOI: 10.1080/09553002.2023.2241907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Ionizing radiation (IR)-induced transcriptional changes are considered a potential biodosimetry for dose evaluation and health risk monitoring of acute or chronic radiation exposure. It is crucial to understand the impact of confounding factors on the radiation-responsive gene expressions for accurate and reproducible dose assessment. This study aims to explore the potential influence of exposures to chemotherapeutic agents such as cyclophosphamide (CP) and mitomycin C (MMC) on IR-induced transcriptional biomarkers. METHODS The human B lymphoblastoid cells (AHH-1) were exposed to 0, 20, 50, 100, 200 and 500 μg/ml CP or 0, 0.025, 0.05, 0.1 and 1 μg/ml MMC, respectively. The appropriate concentrations of CP and MMC were added for 1 h before irradiation with 0, 2, 4 and 6 Gy of 60Co γ-rays at a dose rate of 1 Gy/min. Cell viability was evaluated by CCK-8 assay. The gene expression responses of 18 radiation-induced transcriptional biomarkers were examined at 24 h after exposures to CP and MMC, respectively. The expression levels of five crucial DNA interstrand crosslinks (ICLs) repair genes were also evaluated. The biodosimetry models were established based on the specific radiation-responsive gene combinations. RESULTS The baseline transcriptional levels of the 18 selected genes were slightly affected by CP treatment in the absence of IR, while the transcript responses to IR could be inhibited as the concentration of CP up to 50 μg/ml. MMC treatment up-regulated the background levels in most radiation-responsive gene expressions. Of 18 genes, only the relative mRNA expression levels of CDKN1A and BBC3 were repressed after treatment with IR and MMC in combination. The relative mRNA level of RAD51 was significantly up-regulated after exposure to CP, while the expression of FANCD2, RAD51 and BLM showed an overall increase in response to MMC treatment. After irradiation, the relative mRNA expression levels of FANCD2, BRCA2 and RAD51 exhibited dose-dependent increases in IR alone and MMC treatment groups. In addition, the biodosimetry models were established using 2-4 radiation-responsive genes based on different radiation exposure scenarios. CONCLUSION Our findings suggested that IR-induced gene expression changes were slightly affected after exposure to a relatively low concentration of CP and MMC. Gene expression combinations might improve the broad applicability of transcriptional biodosimetry across diverse radiation exposures.
Collapse
Affiliation(s)
- Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| |
Collapse
|
6
|
Hassel JC, Zimmer L, Sickmann T, Eigentler TK, Meier F, Mohr P, Pukrop T, Roesch A, Vordermark D, Wendl C, Gutzmer R. Medical Needs and Therapeutic Options for Melanoma Patients Resistant to Anti-PD-1-Directed Immune Checkpoint Inhibition. Cancers (Basel) 2023; 15:3448. [PMID: 37444558 DOI: 10.3390/cancers15133448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Available 4- and 5-year updates for progression-free and for overall survival demonstrate a lasting clinical benefit for melanoma patients receiving anti-PD-directed immune checkpoint inhibitor therapy. However, at least one-half of the patients either do not respond to therapy or relapse early or late following the initial response to therapy. Little is known about the reasons for primary and/or secondary resistance to immunotherapy and the patterns of relapse. This review, prepared by an interdisciplinary expert panel, describes the assessment of the response and classification of resistance to PD-1 therapy, briefly summarizes the potential mechanisms of resistance, and analyzes the medical needs of and therapeutic options for melanoma patients resistant to immune checkpoint inhibitors. We appraised clinical data from trials in the metastatic, adjuvant and neo-adjuvant settings to tabulate frequencies of resistance. For these three settings, the role of predictive biomarkers for resistance is critically discussed, as well as are multimodal therapeutic options or novel immunotherapeutic approaches which may help patients overcome resistance to immune checkpoint therapy. The lack of suitable biomarkers and the currently modest outcomes of novel therapeutic regimens for overcoming resistance, most of them with a PD-1 backbone, support our recommendation to include as many patients as possible in novel or ongoing clinical trials.
Collapse
Affiliation(s)
- Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, 69120 Heidelberg, Germany
| | | | - Thomas K Eigentler
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Friedegund Meier
- Department of Dermatology, Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01062 Dresden, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe-Kliniken, 21614 Buxtehude, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Vordermark
- Department for Radiation Oncology, Martin-Luther University Halle-Wittenberg, 06108 Halle, Germany
| | - Christina Wendl
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, 32429 Minden, Germany
| |
Collapse
|
7
|
Krishnaraj J, Yamamoto T, Ohki R. p53-Dependent Cytoprotective Mechanisms behind Resistance to Chemo-Radiotherapeutic Agents Used in Cancer Treatment. Cancers (Basel) 2023; 15:3399. [PMID: 37444509 DOI: 10.3390/cancers15133399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Resistance to chemoradiotherapy is the main cause of cancer treatment failure. Cancer cells, especially cancer stem cells, utilize innate cytoprotective mechanisms to protect themselves from the adverse effects of chemoradiotherapy. Here, we describe a few such mechanisms: DNA damage response (DDR), immediate early response gene 5 (IER5)/heat-shock factor 1 (HSF1) pathway, and p21/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which are regulated by the tumour suppressor p53. Upon DNA damage caused during chemoradiotherapy, p53 is recruited to the sites of DNA damage and activates various DNA repair enzymes including GADD45A, p53R2, DDB2 to repair damaged-DNA in cancer cells. In addition, the p53-IER5-HSF1 pathway protects cancer cells from proteomic stress and maintains cellular proteostasis. Further, the p53-p21-NRF2 pathway induces production of antioxidants and multidrug resistance-associated proteins to protect cancer cells from therapy-induced oxidative stress and to promote effusion of drugs from the cells. This review summarises possible roles of these p53-regulated cytoprotective mechanisms in the resistance to chemoradiotherapy.
Collapse
Affiliation(s)
- Jayaraman Krishnaraj
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsuki Yamamoto
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
8
|
Abishev Z, Ruslanova B, Apbassova S, Chaizhunussova N, Shabdarbayeva D, Azimkhanov A, Zhumadilov K, Stepanenko V, Ivanov S, Shegay P, Hoshi M, Fujimoto N. Effects of Internal Exposure of Radioactive 56MnO2 Particles on the Lung in C57BL Mice. Curr Issues Mol Biol 2023; 45:3208-3218. [PMID: 37185733 PMCID: PMC10137078 DOI: 10.3390/cimb45040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The investigation of the radiation effects of the atomic bombing in Hiroshima and Nagasaki has revealed concerns about the impact of the residual radioactive dust produced in the soil. Manganese-56 is one of the major radioisotopes produced by neutrons from the bomb; hence, we previously examined the biological effects of manganese dioxide-56 (56MnO2) in Wistar rats, in which significant changes were found in the lung. In the present study, ten-week-old male C57BL mice were exposed to three doses of radioactive 56MnO2, stable MnO2 particles, or external γ-rays (2 Gy) to further examine the effects of 56MnO2 in a different species. The estimated absorbed radiation doses from 56MnO2 were 26, 96, and 250 mGy in the lung. The animals were examined at 3, 14, and 70 days post exposure. Histologically, no exposure-related changes were found in the lungs of any group. However, pulmonary mRNA expression of aquaporin 1, which is a useful marker for lung pathophysiology, was significantly elevated at 14 and 70 days, although no such changes were found in the mice exposed to external γ-rays (2 Gy). These data indicated that the inhalation exposure to 56MnO2 particles, with <250 mGy of organ doses, produced significant biological responses in the lung.
Collapse
Affiliation(s)
- Zhaslan Abishev
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | - Bakhyt Ruslanova
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | - Saulesh Apbassova
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | | | - Dariya Shabdarbayeva
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | - Almas Azimkhanov
- National Nuclear Center of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan
| | - Kassym Zhumadilov
- Department of Nuclear Physics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Valeriy Stepanenko
- A. Tsyb Medical Radiological Research Center—National Medical Research Center of Radiology, Ministry of Health of Russian Federation, 249031 Obninsk, Russia
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Center—National Medical Research Center of Radiology, Ministry of Health of Russian Federation, 249031 Obninsk, Russia
| | - Peter Shegay
- National Medical Research Center of Radiology, Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
| | - Masaharu Hoshi
- The Center for Peace, Hiroshima University, Hiroshima 730-0053, Japan
| | - Nariaki Fujimoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-0037, Japan
| |
Collapse
|
9
|
Blinova EA, Nikiforov VS, Kotikova AI, Yanishevskaya MA, Akleyev AV. Methylation Status of Apoptosis Genes and Intensity of Apoptotic Death of Peripheral Blood Lymphocytes in Persons Chronically Exposed to Radiation. Mol Biol 2022. [DOI: 10.1134/s002689332205003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Oxidative Stress and Gene Expression Modifications Mediated by Extracellular Vesicles: An In Vivo Study of the Radiation-Induced Bystander Effect. Antioxidants (Basel) 2021; 10:antiox10020156. [PMID: 33494540 PMCID: PMC7911176 DOI: 10.3390/antiox10020156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/27/2022] Open
Abstract
Radiation-induced bystander effect is a biological response in nonirradiated cells receiving signals from cells exposed to ionising radiation. The aim of this in vivo study was to analyse whether extracellular vesicles (EVs) originating from irradiated mice could induce modifications in the redox status and expression of radiation-response genes in bystander mice. C57BL/6 mice were whole-body irradiated with 0.1-Gy and 2-Gy X-rays, and EVs originating from mice irradiated with the same doses were injected into naïve, bystander mice. Lipid peroxidation in the spleen and plasma reactive oxygen metabolite (ROM) levels increased 24 h after irradiation with 2 Gy. The expression of antioxidant enzyme genes and inducible nitric oxide synthase 2 (iNOS2) decreased, while cell cycle arrest-, senescence- and apoptosis-related genes were upregulated after irradiation with 2 Gy. In bystander mice, no significant alterations were observed in lipid peroxidation or in the expression of genes connected to cell cycle arrest, senescence and apoptosis. However, there was a systemic increase in the circulating ROM level after an intravenous EV injection, and EVs originating from 2-Gy-irradiated mice caused a reduced expression of antioxidant enzyme genes and iNOS2 in bystander mice. In conclusion, we showed that ionising radiation-induced alterations in the cellular antioxidant system can be transmitted in vivo in a bystander manner through EVs originating from directly irradiated animals.
Collapse
|
11
|
Yamaguchi M, Nishida T, Sato Y, Nakai Y, Kashiwakura I. Identification of Radiation-Dose-Dependent Expressive Genes in Individuals Exposed to External Ionizing Radiation. Radiat Res 2020; 193:274-285. [DOI: 10.1667/rr15532.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Masaru Yamaguchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| | - Teruki Nishida
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| | - Yoshiaki Sato
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| | - Yuji Nakai
- Institute of Regional Innovation, Section of Food Sciences, Laboratory of Foods, Hirosaki University, Aomori 038-0012, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| |
Collapse
|
12
|
Keam SP, Gulati T, Gamell C, Caramia F, Arnau GM, Huang C, Schittenhelm RB, Kleifeld O, Neeson PJ, Williams SG, Haupt Y. Biodosimetric transcriptional and proteomic changes are conserved in irradiated human tissue. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:241-249. [PMID: 29850926 DOI: 10.1007/s00411-018-0746-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Transcriptional dosimetry is an emergent field of radiobiology aimed at developing robust methods for detecting and quantifying absorbed doses using radiation-induced fluctuations in gene expression. A combination of RNA sequencing, array-based and quantitative PCR transcriptomics in cellular, murine and various ex vivo human models has led to a comprehensive description of a fundamental set of genes with demonstrable dosimetric qualities. However, these are yet to be validated in human tissue due to the scarcity of in situ-irradiated source material. This represents a major hurdle to the continued development of transcriptional dosimetry. In this study, we present a novel evaluation of a previously reported set of dosimetric genes in human tissue exposed to a large therapeutic dose of radiation. To do this, we evaluated the quantitative changes of a set of dosimetric transcripts consisting of FDXR, BAX, BCL2, CDKN1A, DDB2, BBC3, GADD45A, GDF15, MDM2, SERPINE1, TNFRSF10B, PLK3, SESN2 and VWCE in guided pre- and post-radiation (2 weeks) prostate cancer biopsies from seven patients. We confirmed the prolonged dose-responsivity of most of these transcripts in in situ-irradiated tissue. BCL2, GDF15, and to some extent TNFRSF10B, were markedly unreliable single markers of radiation exposure. Nevertheless, as a full set, these genes reliably segregated non-irradiated and irradiated tissues and predicted radiation absorption on a patient-specific basis. We also confirmed changes in the translated protein product for a small subset of these dosimeters. This study provides the first confirmatory evidence of an existing dosimetric gene set in less-accessible tissues-ensuring peripheral responses reflect tissue-specific effects. Further work will be required to determine if these changes are conserved in different tissue types, post-radiation times and doses.
Collapse
Affiliation(s)
- Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | - Twishi Gulati
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Cristina Gamell
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Franco Caramia
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Gisela Mir Arnau
- Molecular Genomics Facility, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Oded Kleifeld
- The Smoler Proteomics Center Technion, Israel Institute of Technology, Haifa, Israel
| | - Paul J Neeson
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Scott G Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Monash Biomedical Proteomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Menzel F, Kaiser N, Haehnel S, Rapp F, Patties I, Schöneberg N, Haimon Z, Immig K, Bechmann I. Impact of X-irradiation on microglia. Glia 2017; 66:15-33. [DOI: 10.1002/glia.23239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - Nicole Kaiser
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Susann Haehnel
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Felicitas Rapp
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ina Patties
- Department of Radiation Therapy; Leipzig University; Leipzig Germany
| | | | - Zhana Haimon
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| | - Kerstin Immig
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University; Leipzig Germany
| |
Collapse
|
14
|
Wu J, Wang F, Su Z, Liu J, Hu S, Li H, Hu P, Wu D. Role of ataxia-telangiectasia mutated in hydrogen peroxide preconditioning against oxidative stress in Neuro-2a cells. Mol Med Rep 2017; 15:4280-4285. [DOI: 10.3892/mmr.2017.6510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/27/2017] [Indexed: 11/05/2022] Open
|
15
|
Li S, Zhang QZ, Zhang DQ, Feng JB, Luo Q, Lu X, Wang XR, Li KP, Chen DQ, Mu XF, Gao L, Liu QJ. GDF-15 gene expression alterations in human lymphoblastoid cells and peripheral blood lymphocytes following exposure to ionizing radiation. Mol Med Rep 2017; 15:3599-3606. [PMID: 28440431 PMCID: PMC5436215 DOI: 10.3892/mmr.2017.6476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
The identification of rapid, sensitive and high‑throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH‑1 human lymphoblastoid cells, following exposure to γ‑rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF‑15 gene expression in AHH‑1 cells and human peripheral blood lymphocytes (HPBLs). GDF‑15 mRNA and protein expression levels following exposure to γ‑rays and neutron radiation were assessed by reverse transcription‑quantitative polymerase chain reaction and western blot analysis in AHH‑1 cells. In addition, alterations in GDF‑15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF‑15 mRNA and protein expression levels in AHH‑1 cells were significantly upregulated following exposure to γ‑ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose‑response relationship was identified in AHH‑1 cells at γ‑ray doses between 0.4 and 1.6 Gy. GDF‑15 mRNA levels in HPBLs were significantly upregulated following exposure to γ‑ray doses between 1 and 8 Gy, within 4‑48 h following irradiation. These results suggested that significant time‑ and dose‑dependent alterations in GDF‑15 mRNA and protein expression occur in AHH‑1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF‑15 gene expression may have potential as a biomarker to evaluate radiation exposure.
Collapse
Affiliation(s)
- Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qing-Zhao Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - De-Qin Zhang
- Beijing Shijingshan Center for Disease Control and Prevention, Beijing 100043, P.R. China
| | - Jiang-Bin Feng
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qun Luo
- Department of Transfusion, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xin-Ru Wang
- Department of Clinical Laboratory, Second Artillery General Hospital PLA, Beijing 100088, P.R. China
| | - Kun-Peng Li
- Department of Radiotherapy, General Hospital of Armed Police Forces, Beijing 100039, P.R. China
| | - De-Qing Chen
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xiao-Feng Mu
- Department of Radiotherapy, General Hospital of Armed Police Forces, Beijing 100039, P.R. China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| |
Collapse
|
16
|
Park JG, Paul S, Briones N, Zeng J, Gillis K, Wallstrom G, LaBaer J, Amundson SA. Developing Human Radiation Biodosimetry Models: Testing Cross-Species Conversion Approaches Using an Ex Vivo Model System. Radiat Res 2017; 187:708-721. [PMID: 28328310 DOI: 10.1667/rr14655.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the event of a large-scale radiation exposure, accurate and quick assessment of radiation dose received would be critical for triage and medical treatment of large numbers of potentially exposed individuals. Current methods of biodosimetry, such as the dicentric chromosome assay, are time consuming and require sophisticated equipment and highly trained personnel. Therefore, scalable biodosimetry approaches, including gene expression profiles in peripheral blood cells, are being investigated. Due to the limited availability of appropriate human samples, biodosimetry development has relied heavily on mouse models, which are not directly applicable to human response. Therefore, to explore the feasibility of using non-human primate (NHP) models to build and test a biodosimetry algorithm for use in humans, we irradiated ex vivo peripheral blood samples from both humans and rhesus macaques with doses of 0, 2, 5, 6 and 7 Gy, and compared the gene expression profiles 24 h later using Agilent human microarrays. Among the dose-responsive genes in human and using non-human primate, 52 genes showed highly correlated expression patterns between the species, and were enriched in p53/DNA damage response, apoptosis and cell cycle-related genes. When these interspecies-correlated genes were used to build biodosimetry models with using NHP data, the mean prediction accuracy on non-human primate samples was about 90% within 1 Gy of delivered dose in leave-one-out cross-validation. However, tests on human samples suggested that human gene expression values may need to be adjusted prior to application of the NHP model. A "multi-gene" approach utilizing all gene values for cross-species conversion and applying the converted values on the NHP biodosimetry models, gave a leave-one-out cross-validation prediction accuracy for human samples highly comparable (up to 94%) to that for non-human primates. Overall, this study demonstrates that a robust NHP biodosimetry model can be built using interspecies-correlated genes, and that, by using multiple regression-based cross-species conversion of expression values, absorbed dose in human samples can be accurately predicted by the NHP model.
Collapse
Affiliation(s)
- Jin G Park
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona
| | - Sunirmal Paul
- d Center for Radiological Research, Columbia University Medical Center, New York
| | - Natalia Briones
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona
| | - Jia Zeng
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona.,b Department of Biomedical Informatics, Arizona State University, Arizona
| | - Kristin Gillis
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona
| | - Garrick Wallstrom
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona.,b Department of Biomedical Informatics, Arizona State University, Arizona
| | - Joshua LaBaer
- a Biodesign Center for Personalized Diagnostic, Biodesign Institute, Arizona State University, Arizona.,c School of Molecular Sciences, Arizona State University, Arizona
| | - Sally A Amundson
- d Center for Radiological Research, Columbia University Medical Center, New York
| |
Collapse
|
17
|
Golla S, Golla JP, Krausz KW, Manna SK, Simillion C, Beyoğlu D, Idle JR, Gonzalez FJ. Metabolomic Analysis of Mice Exposed to Gamma Radiation Reveals a Systemic Understanding of Total-Body Exposure. Radiat Res 2017; 187:612-629. [PMID: 28467754 DOI: 10.1667/rr14592.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diagnostic markers are needed for accidental or deliberate radiation exposure that could cause acute and chronic radiation toxicity. Biomarkers of temporal, dose-dependent, aging-attenuated and multiple radiation exposures have been previously described by others. However, the physiological origin and biochemical networks that generate these biomarkers and their association at the molecular level have yet to be explored. Hence, the discovery and identification of total-body-irradiation-induced tissue specific biomarkers remains an enormous challenge within radiation biodosimetry research. To determine the tissue level response of total-body exposure (6 Gy), metabolomics analysis was carried out on radiosensitive tissues bone marrow, ileum, liver, muscle and lung as well as serum and on urine within 12 h postirradiation. Differences in the metabolic signatures between the sham and gamma-irradiated groups were analyzed by hydrophilic interaction liquid chromatography (HILIC)-based ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS). A panel of 67 biomarkers identified in radiosensitive tissues and biofluids (serum and urine) at a 6 Gy dose. Among the identified biomarkers, 3-methylglutarylcarnitine (3-MGC) was found to be a novel metabolite in liver, serum and urine that could potentially be an early radiation response marker. The degree of metabolic changes among different tissues showed perturbations in pathways including DNA methylation, energy, nucleic acid, amino acid, glutathione and bile acid metabolism. These results highlight metabolomics as a potential novel approach to understand functional alterations in the metabolome that could be adapted for use in the rapid assessment of radiation exposure and triage protocols in the case of nuclear incidents.
Collapse
Affiliation(s)
- Srujana Golla
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jaya Prakash Golla
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kristopher W Krausz
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Soumen K Manna
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cedric Simillion
- b Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.,c Department of Clinical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Diren Beyoğlu
- c Department of Clinical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Jeffrey R Idle
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,c Department of Clinical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Frank J Gonzalez
- a Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Saberi A, Khodamoradi E, Tahmasebi Birgani MJ, Makvandi M, Noori B. Dose-Response Curves of the FDXR and RAD51 Genes with 6 and 18 MV Beam Energies in Human Peripheral Blood Lymphocytes. IRANIAN RED CRESCENT MEDICAL JOURNAL 2017; 18:e32013. [PMID: 28191342 PMCID: PMC5292577 DOI: 10.5812/ircmj.32013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Rapid dose assessment using biological dosimetry methods is essential to increase the chance of survival of exposed individuals in radiation accidents. OBJECTIVES We compared the expression levels of the FDXR and RAD51 genes at 6 and 18 MV beam energies in human peripheral blood lymphocytes. The results of our study can be used to analyze radiation energy in biological dosimetry. METHODS For this in vitro experimental study, from 36 students in the medical physics and virology departments, seven voluntary, healthy, non-smoking male blood donors of Khuzestan ethnicity with no history of exposure to ionization radiation were selected using simple randomized sampling. Sixty-three peripheral blood samples were collected from the seven healthy donors. Human peripheral blood was then exposed to doses of 0, 0.2, 0.5, 2, and 4 Gy with 6 and 18 MV beam energies in a Linac Varian 2100C/D (Varian, USA) at Golestan hospital in Ahvaz, Iran. After RNA extraction and cDNA synthesis, the expression levels of FDXR and RAD51 were determined 24 hours post-irradiation using the gel-purified reverse transcription polymerase chain reaction (RT-PCR) technique and TaqMan strategy (by real-time PCR). RESULTS The expression level of FDXR gene was significantly increased at doses of 2 Gy and 4 Gy in the 6 - 18 MV energy range (P < 0.001 and P < 0.008, respectively). The medians with interquartile ranges (IQRs) of the copy numbers of the FDXR gene at 2 Gy and 4 Gy doses under 6 and 18 MV beam energies were 2393.59 (1798.21, 2575.37) and 2983.00 (2199.48, 3643.82) and 3779.12 (3051.40, 5120.74) and 5051.26 (4704.83, 5859.17), respectively. However, RAD51 gene expression levels only showed a significant difference between samples at a dose of 2 Gy with 6 and 18 MV beam energies, respectively (P < 0.040). The medians with IQRs of the copy numbers of the RAD51 gene were 2092.77 (1535.78, 2705.61) and 3412.57 (2979.72, 4530.61) at beam energies of 6 and 18 MV, respectively. CONCLUSIONS The data suggest that the expression analysis of the FDXR gene, contrary to that of the RAD51 gene, may be suitable for assessment of high-energy X-ray. In addition, RAD51 is not a suitable gene for dose assessment in biological dosimetry.
Collapse
Affiliation(s)
- Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, IR Iran
| | - Ehsan Khodamoradi
- Department of Radiology and Nuclear Medicine, Paramedical School, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
- Corresponding Author: Ehsan Khodamoradi, Department of Radiology and Nuclear Medicine, Paramedical School, Kermanshah University of Medical Sciences, Kermanshah, IR Iran. E-mail:
| | - Mohammad Javad Tahmasebi Birgani
- Department of Radiology and Nuclear Medicine, Paramedical School, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Manoochehr Makvandi
- Department of Virology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, IR Iran
| | - Bijan Noori
- Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, IR Iran
| |
Collapse
|
19
|
Yu XP, Wu YM, Liu Y, Tian M, Wang JD, Ding KK, Ma T, Zhou PK. IER5 is involved in DNA Double-Strand Breaks Repair in Association with PAPR1 in Hela Cells. Int J Med Sci 2017; 14:1292-1300. [PMID: 29104487 PMCID: PMC5666564 DOI: 10.7150/ijms.21510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/01/2017] [Indexed: 12/01/2022] Open
Abstract
The immediate early response gene 5 (IER5) is a radiation response gene induced in a dose-independent manner, and has been suggested to be a molecular biomarker for biodosimetry purposes upon radiation exposure. Here, we investigated the function of IER5 in DNA damage response and repair. We found that interference on IER5 expression significantly decreased the efficiency of repair of DNA double-strand breaks induced by ionizing radiations in Hela cells. We found that IER5 participates in the non-homologous end-joining pathway of DNA breaks repair. Additionally, we identified a number of potential IER5-interacting proteins through mass spectrometry-based protein assays. The interaction of IER5 protein with poly(ADP-Ribose) polymerase 1 (PARP1) and Ku70 was further confirmed by immunoprecipitation assays. We also found that Olaparib, a PARP1 inhibitor, affected the stability of IER5. These results indicate that targeting of IER5 may be a novel DNA damage response-related strategy to use during cervical cancer radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Xin-Ping Yu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Yu-Mei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Yang Liu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Ming Tian
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Jian-Dong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Ku-Ke Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing ,100088, China
| | - Teng Ma
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
20
|
Stojković R, Fucic A, Ivanković D, Jukić Z, Radulović P, Grah J, Kovačević N, Barišić L, Krušlin B. Age and sex differences in genome damage between prepubertal and adult mice after exposure to ionising radiation. Arh Hig Rada Toksikol 2016; 67:297-303. [DOI: 10.1515/aiht-2016-67-2882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Abstract
The mechanisms that lead to sex and age differences in biological responses to exposure to ionising radiation and related health risks have still not been investigated to a satisfactory extent. The significance of sex hormones in the aetiology of radiogenic cancer types requires a better understanding of the mechanisms involved, especially during organism development. The aim of this study was to show age and sex differences in genome damage between prepubertal and adult mice after single exposure to gamma radiation. Genome damage was measured 24 h, 48 h, and 72 h after exposure of 3-week and 12-week old BALB/CJ mice to 8 Gy of gamma radiation using an in vivo micronucleus assay. There was a significantly higher genome damage in prepubertal than in adult animals of both sexes for all sampling times. Irradiation caused a higher frequency of micronuclei in males of both age groups. Our study confirms sex differences in the susceptibility to effects of ionising radiation in mice and is the first to show that such a difference occurs already at prepubertal age.
Collapse
Affiliation(s)
| | - Aleksandra Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Ksaverska c 2, Croatia
| | | | - Zoran Jukić
- Zagreb, General Hospital “Nova Gradiška”, Nova Gradiška Croatia
- School of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Petra Radulović
- Clinical Hospital Centre “Sestre Milosrdnice”, Zagreb, Croatia
| | - Josip Grah
- University Hospital “Zagreb” Croatia
- School of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | | | | | - Božo Krušlin
- Clinical Hospital Centre “Sestre Milosrdnice”, Zagreb, Croatia
| |
Collapse
|
21
|
Pathak R, Bachri A, Ghosh SP, Koturbash I, Boerma M, Binz RK, Sawyer JR, Hauer-Jensen M. The Vitamin E Analog Gamma-Tocotrienol (GT3) Suppresses Radiation-Induced Cytogenetic Damage. Pharm Res 2016; 33:2117-25. [PMID: 27216753 PMCID: PMC4967083 DOI: 10.1007/s11095-016-1950-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/13/2016] [Indexed: 01/24/2023]
Abstract
Purpose Ionizing radiation (IR) generates reactive oxygen species (ROS), which cause DNA double-strand breaks (DSBs) that are responsible for cytogenetic alterations. Because antioxidants are potent ROS scavengers, we determined whether the vitamin E isoform γ-tocotrienol (GT3), a radio-protective multifunctional dietary antioxidant, can suppress IR-induced cytogenetic damage. Methods We measured DSB formation in irradiated primary human umbilical vein endothelial cells (HUVECs) by quantifying the formation of γ-H2AX foci. Chromosomal aberrations (CAs) were analyzed in irradiated HUVECs and in the bone marrow cells of irradiated mice by conventional and fluorescence-based chromosome painting techniques. Gene expression was measured in HUVECs with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results GT3 pretreatment reduced DSB formation in HUVECS, and also decreased CAs in HUVECs and mouse bone marrow cells after irradiation. Moreover, GT3 increased expression of the DNA-repair gene RAD50 and attenuated radiation-induced RAD50 suppression. Conclusions GT3 attenuates radiation-induced cytogenetic damage, possibly by affecting RAD50 expression. GT3 should be explored as a therapeutic to reduce the risk of developing genetic diseases after radiation exposure.
Collapse
Affiliation(s)
- Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Biomed I, Suite 238, 4301 West Markham, Slot 522-3, Little Rock, Arkansas, 72205, USA.
| | - Abdel Bachri
- Department of Engineering and Engineering Physics, Southern Arkansas University, Magnolia, Arkansas, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, Maryland, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Biomed I, Suite 238, 4301 West Markham, Slot 522-3, Little Rock, Arkansas, 72205, USA
| | - Regina K Binz
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jeffrey R Sawyer
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Biomed I, Suite 238, 4301 West Markham, Slot 522-3, Little Rock, Arkansas, 72205, USA
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
22
|
Helmke C, Becker S, Strebhardt K. The role of Plk3 in oncogenesis. Oncogene 2016; 35:135-47. [PMID: 25915845 DOI: 10.1038/onc.2015.105] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
The polo-like kinases (Plks) encompass a family of five serine/threonine protein kinases that play essential roles in many cellular processes involved in the control of the cell cycle, including entry into mitosis, DNA replication and the response to different types of stress. Plk1, which has been validated as a cancer target, came into the focus of many pharmaceutical companies for the development of small-molecule inhibitors as anticancer agents. Recently, FDA (Food and Drug Administration) has granted a breakthrough therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. However, the various ATP-competitive inhibitors of Plk1 that are currently in clinical development also inhibit the activities of Plk2 and Plk3, which are considered as tumor suppressors. Plk3 contributes to the control and progression of the cell cycle while acting as a mediator of apoptosis and various types of cellular stress. The aberrant expression of Plk3 was found in different types of tumors. Recent progress has improved our understanding of Plk3 in regulating stress signaling and tumorigenesis. When using ATP-competitive Plk1 inhibitors, the biological roles of Plk1-related family members like Plk3 in cancer cells need to be considered carefully to improve treatment strategies against cancer.
Collapse
Affiliation(s)
- C Helmke
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
| | - S Becker
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
| | - K Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
23
|
Ishihara H, Tanaka I, Yakumaru H, Tanaka M, Yokochi K, Fukutsu K, Tajima K, Nishimura M, Shimada Y, Akashi M. Quantification of damage due to low-dose radiation exposure in mice: construction and application of a biodosimetric model using mRNA indicators in circulating white blood cells. JOURNAL OF RADIATION RESEARCH 2016; 57:25-34. [PMID: 26589759 PMCID: PMC4708920 DOI: 10.1093/jrr/rrv066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/18/2015] [Indexed: 05/06/2023]
Abstract
Biodosimetry, the measurement of radiation damage in a biologic sample, is a reliable tool for increasing the accuracy of dose estimation. Although established chromosome analyses are suitable for estimating the absorbed dose after high-dose irradiation, biodosimetric methodology to measure damage following low-dose exposure is underdeveloped. RNA analysis of circulating blood containing radiation-sensitive cells is a candidate biodosimetry method. Here we quantified RNA from a small amount of blood isolated from mice following low-dose body irradiation (<0.5 Gy) aimed at developing biodosimetric tools for situations that are difficult to study in humans. By focusing on radiation-sensitive undifferentiated cells in the blood based on Myc RNA expression, we quantified the relative levels of RNA for DNA damage-induced (DDI) genes, such as Bax, Bbc3 and Cdkn1a. The RNA ratios of DDI genes/Myc in the blood increased in a dose-dependent manner 4 h after whole-body irradiation at doses ranging from 0.1 to 0.5 Gy (air-kerma) of X-rays, regardless of whether the mice were in an active or resting state. The RNA ratios were significantly increased after 0.014 Gy (air-kerma) of single X-ray irradiation. The RNA ratios were directly proportional to the absorbed doses in water ranging from 0.1 to 0.5 Gy, based on gamma-irradiation from (137)Cs. Four hours after continuous irradiation with gamma-rays or by internal contamination with a beta-emitter, the increased RNA ratios resembled those following single irradiation. These findings indicate that the RNA status can be utilized as a biodosimetric tool to estimate low-dose radiation when focusing on undifferentiated cells in blood.
Collapse
Affiliation(s)
- Hiroshi Ishihara
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Izumi Tanaka
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Haruko Yakumaru
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mika Tanaka
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazuko Yokochi
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kumiko Fukutsu
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsushi Tajima
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mayumi Nishimura
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoshiya Shimada
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Akashi
- Board, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
24
|
Brzóska K, Kruszewski M. Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:353-63. [PMID: 25972268 PMCID: PMC4510913 DOI: 10.1007/s00411-015-0603-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/30/2015] [Indexed: 05/03/2023]
Abstract
The most frequently used and the best established method of biological dosimetry at present is the dicentric chromosome assay, which is poorly suitable for a mass casualties scenario. This gives rise to the need for the development of new, high-throughput assays for rapid identification of the subjects exposed to ionizing radiation. In the present study, we tested the usefulness of gene expression analysis in blood cells for biological dosimetry. Human peripheral blood from three healthy donors was X-irradiated with doses of 0 (control), 0.6, and 2 Gy. The mRNA level of 16 genes (ATF3, BAX, BBC3, BCL2, CDKN1A, DDB2, FDXR, GADD45A, GDF15, MDM2, PLK3, SERPINE1, SESN2, TNFRSF10B, TNFSF4, and VWCE) was assessed by reverse transcription quantitative PCR 6, 12, 24, and 48 h after exposure with ITFG1 and DPM1 used as a reference genes. The panel of radiation-responsive genes was selected comprising GADD45A, CDKN1A, BAX, BBC3, DDB2, TNFSF4, GDF15, and FDXR. Cluster analysis showed that ΔC t values of the selected genes contained sufficient information to allow discrimination between irradiated and non-irradiated blood samples. The samples were clearly grouped according to the absorbed doses of radiation and not to the time interval after irradiation or to the blood donor.
Collapse
Affiliation(s)
- Kamil Brzóska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland,
| | | |
Collapse
|
25
|
Budworth H, Snijders AM, Marchetti F, Mannion B, Bhatnagar S, Kwoh E, Tan Y, Wang SX, Blakely WF, Coleman M, Peterson L, Wyrobek AJ. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood. PLoS One 2012; 7:e48619. [PMID: 23144912 PMCID: PMC3492462 DOI: 10.1371/journal.pone.0048619] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/26/2012] [Indexed: 01/28/2023] Open
Abstract
DNA damage and repair are hallmarks of cellular responses to ionizing radiation. We hypothesized that monitoring the expression of DNA repair-associated genes would enhance the detection of individuals exposed to radiation versus other forms of physiological stress. We employed the human blood ex vivo radiation model to investigate the expression responses of DNA repair genes in repeated blood samples from healthy, non-smoking men and women exposed to 2 Gy of X-rays in the context of inflammation stress mimicked by the bacterial endotoxin lipopolysaccharide (LPS). Radiation exposure significantly modulated the transcript expression of 12 genes of 40 tested (2.2E-06<p<0.03), of which 8 showed no overlap between unirradiated and irradiated samples (CDKN1A, FDXR, BBC3, PCNA, GADD45a, XPC, POLH and DDB2). This panel demonstrated excellent dose response discrimination (0.5 to 8 Gy) in an independent human blood ex vivo dataset, and 100% accuracy for discriminating patients who received total body radiation. Three genes of this panel (CDKN1A, FDXR and BBC3) were also highly sensitive to LPS treatment in the absence of radiation exposure, and LPS co-treatment significantly affected their radiation responses. At the protein level, BAX and pCHK2-thr68 were elevated after radiation exposure, but the pCHK2-thr68 response was significantly decreased in the presence of LPS. Our combined panel yields an estimated 4-group accuracy of ∼90% to discriminate between radiation alone, inflammation alone, or combined exposures. Our findings suggest that DNA repair gene expression may be helpful to identify biodosimeters of exposure to radiation, especially within high-complexity exposure scenarios.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Antoine M. Snijders
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Francesco Marchetti
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Brandon Mannion
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sandhya Bhatnagar
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ely Kwoh
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yuande Tan
- Center for Biostatistics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Shan X. Wang
- Department of Materials Science and Engineering, Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - William F. Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Matthew Coleman
- Radiation Oncology, UC Davis School of Medicine, University of California Davis, Davis, California, United States of America
| | - Leif Peterson
- Center for Biostatistics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Andrew J. Wyrobek
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Grace MB, Singh VK, Rhee JG, Jackson WE, Kao TC, Whitnall MH. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis. JOURNAL OF RADIATION RESEARCH 2012; 53:840-53. [PMID: 22843381 PMCID: PMC3483857 DOI: 10.1093/jrr/rrs060] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 05/18/2023]
Abstract
The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.
Collapse
Affiliation(s)
- Marcy B. Grace
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Vijay K. Singh
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Juong G. Rhee
- Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD 21201-1559, USA
| | - William E. Jackson
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Tzu-Cheg Kao
- Division of Epidemiology and Biostatistics, Department of Preventive Medicine and Biometrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mark H. Whitnall
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Corresponding author. Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave., Bethesda, MD 20889-5603. Phone: 1-301-295-9262; Fax: 1-301-295-6503; E-mail:
| |
Collapse
|
27
|
Pang J, Xi C, Dai Y, Gong H, Zhang TM. Altered expression of base excision repair genes in response to high glucose-induced oxidative stress in HepG2 hepatocytes. Med Sci Monit 2012; 18:BR281-5. [PMID: 22739728 PMCID: PMC3560773 DOI: 10.12659/msm.883206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background It is widely accepted that chronic hyperglycemia induces DNA oxidative damage in type 2 diabetes, but little is known about the effect of hyperglycemia on the DNA repair system which plays a critical role in the maintenance of genomic DNA stability in diabetes. Material/Methods To investigate the alteration of base excision repair (BER) genes under hyperglycemia, the relative expression of the mRNAs of the BER genes – ogg1, polβ, lig3, xrcc1, and parp1 – were quantified using real-time PCR in HepG2 hepatocytes incubated with 5.5 mM or 30 mM glucose. Results High levels of glucose induced ROS accumulation and DNA damage, paralleling the dynamic alterations of BER mRNA expression. Compared to 5.5 mM glucose-treated cells, ogg1 and polβ mRNA expression transiently increased at day 1 and decreased after day 4 in cells exposed to 30 mM glucose. Exposure to 30 mM glucose increased the activity of PARP1, which led to reduced cellular NAD content and insulin receptor phosphorylation. Conclusions Exposure to high concentrations of glucose initially led to the increased expression of BER mRNAs to counteract hyperglycemia-induced DNA damage; however, long-term exposure to high glucose concentrations reduced the expression of mRNA from BER genes, leading to accumulated DNA damage.
Collapse
Affiliation(s)
- Jing Pang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, China
| | | | | | | | | |
Collapse
|