1
|
Ge T, Ning B, Wu Y, Chen X, Qi H, Wang H, Zhao M. MicroRNA-specific therapeutic targets and biomarkers of apoptosis following myocardial ischemia-reperfusion injury. Mol Cell Biochem 2024; 479:2499-2521. [PMID: 37878166 DOI: 10.1007/s11010-023-04876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
MicroRNAs are single-stranded non-coding RNAs that participate in post-transcriptional regulation of gene expression, it is involved in the regulation of apoptosis after myocardial ischemia-reperfusion injury. For example, the alteration of mitochondrial structure is facilitated by MicroRNA-1 through the regulation of apoptosis-related proteins, such as Bax and Bcl-2, thereby mitigating cardiomyocyte apoptosis. MicroRNA-21 not only modulates the expression of NF-κB to suppress inflammatory signals but also activates the PI3K/AKT pathway to mitigate ischemia-reperfusion injury. Overexpression of MicroRNA-133 attenuates reactive oxygen species (ROS) production and suppressed the oxidative stress response, thereby mitigating cellular apoptosis. MicroRNA-139 modulates the extrinsic death signal of Fas, while MicroRNA-145 regulates endoplasmic reticulum calcium overload, both of which exert regulatory effects on cardiomyocyte apoptosis. Therefore, the article categorizes the molecular mechanisms based on the three classical pathways and multiple signaling pathways of apoptosis. It summarizes the targets and pathways of MicroRNA therapy for ischemia-reperfusion injury and analyzes future research directions.
Collapse
Affiliation(s)
- Teng Ge
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Yongqing Wu
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Xiaolin Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Hongfei Qi
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Mingjun Zhao
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Deputy 2, Weiyang West Road, Weicheng District, Xianyang, 712000, China.
| |
Collapse
|
2
|
Jiao W, Hao J, Liu JM, Gao WN, Zhao JJ, Li YJ. Mesenchymal stem cells-derived extracellular vesicle-incorporated H19 attenuates cardiac remodeling in rats with heart failure. Kaohsiung J Med Sci 2024; 40:46-62. [PMID: 37885317 DOI: 10.1002/kjm2.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac remodeling is manifested by hypertrophy and apoptosis of cardiomyocytes, resulting in the progression of cardiovascular diseases. Long noncoding RNAs (lncRNAs) serve as modifiers of cardiac remodeling. In this study, we aimed to explore the molecular mechanism of H19 shuttled by mesenchymal stem cells (MSC)-derived extracellular vesicles (EV) in cardiac remodeling upon heart failure (HF). Using the GEO database, H19, microRNA (miR)-29b-3p, and CDC42 were screened out as differentially expressed biomolecules in HF. H19 and CDC42 were elevated, and miR-29b-3p was decreased after MSC-EV treatment in rats subjected to ligation of the coronary artery. MSC-EV alleviated myocardial injury in rats with HF. H19 downregulation exacerbated myocardial injury, while miR-29b-3p inhibitor alleviated myocardial injury. By contrast, CDC42 downregulation aggravated the myocardial injury again. PI3K/AKT pathway was activated by MSC-EV. These findings provide insights into how H19 shuttled by EV mitigates cardiac remodeling through a competitive endogenous RNA network regarding miR-29b-3p and CDC42.
Collapse
Affiliation(s)
- Wei Jiao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jie Hao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jin-Ming Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Wei-Nian Gao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jia-Jia Zhao
- Graduate Academy of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yong-Jun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
3
|
Mohammed OA, Alghamdi M, Alfaifi J, Alamri MMS, Al-Shahrani AM, Alharthi MH, Alshahrani AM, Alhalafi AH, Adam MIE, Bahashwan E, Jarallah AlQahtani AA, BinAfif WF, Abdel-Reheim MA, Abdel Mageed SS, Doghish AS. The emerging role of miRNAs in myocardial infarction: From molecular signatures to therapeutic targets. Pathol Res Pract 2024; 253:155087. [PMID: 38183820 DOI: 10.1016/j.prp.2023.155087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Globally, myocardial infarction (MI) and other cardiovascular illnesses have long been considered the top killers. Heart failure and mortality are the results of myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, all of which are caused by MI. MicroRNAs (miRNAs) play a crucial regulatory function in the progression and advancement of heart disease following an MI. By consolidating the existing data on miRNAs, our aim is to gain a more comprehensive understanding of their role in the pathological progression of myocardial injury after MI and to identify potential crucial target pathways. Also included are the primary treatment modalities and their most recent developments. miRNAs have the ability to regulate both normal and pathological activity, including the key signaling pathways. As a result, they may exert medicinal benefits. This review presents a comprehensive analysis of the role of miRNAs in MI with a specific emphasis on their impact on the regeneration of cardiomyocytes and other forms of cell death, such as apoptosis, necrosis, and autophagy. Furthermore, the targets of pro- and anti-MI miRNAs are comparatively elucidated.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Al-Shahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Khidr EG, Abulsoud AI, Doghish AA, El-Mahdy HA, Ismail A, Elballal MS, Sarhan OM, Abdel Mageed SS, Elsakka EGE, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Mohammed OA, Abulsoud LA, Doghish AS. The potential role of miRNAs in the pathogenesis of cardiovascular diseases - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154624. [PMID: 37348290 DOI: 10.1016/j.prp.2023.154624] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
For the past two decades since their discovery, scientists have linked microRNAs (miRNAs) to posttranscriptional regulation of gene expression in critical cardiac physiological and pathological processes. Multiple non-coding RNA species regulate cardiac muscle phenotypes to stabilize cardiac homeostasis. Different cardiac pathological conditions, including arrhythmia, myocardial infarction, and hypertrophy, are modulated by non-coding RNAs in response to stress or other pathological conditions. Besides, miRNAs are implicated in several modulatory signaling pathways of cardiovascular disorders including mitogen-activated protein kinase, nuclear factor kappa beta, protein kinase B (AKT), NOD-like receptor family pyrin domain-containing 3 (NLRP3), Jun N-terminal kinases (JNKs), Toll-like receptors (TLRs) and apoptotic protease-activating factor 1 (Apaf-1)/caspases. This review highlights the potential role of miRNAs as therapeutic targets and updates our understanding of their roles in the processes underlying pathogenic phenotypes of cardiac muscle.
Collapse
Affiliation(s)
- Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
5
|
Li W, Gao Z, Guan QL. Tan IIA mitigates vascular smooth muscle cell proliferation and migration induced by ox-LDL through the miR-137/TRPC3 axis. Kaohsiung J Med Sci 2023. [PMID: 36912285 DOI: 10.1002/kjm2.12663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Tanshinone IIA (Tan IIA) has an important role in treatment of cardiovascular diseases, including atherosclerosis. The vascular smooth muscle cells (VSMCs) are a major part of the atherosclerotic plaque. However, the biological functions of Tan IIA in regulating VSMCs function remain mostly unclear. This research aimed at identifying the explicit molecular mechanism that Tan IIA regulates oxidized low-density lipoprotein (ox-LDL)-mediated VSMC proliferation and migration. VSMCs challenged by ox-LDL were adopted as cellular model of atherosclerosis, and suffered from Tan IIA treatment. After that, cells proliferation, apoptosis or migration were measured. The expression levels of microRNA (miR)-137, transient receptor potential cation channel subfamily C member 3 (TRPC3) and proliferating cell nuclear antigen (PCNA) were measured. The targeting relationship between miR-137 and TRPC3 was determined. It was found that Tan IIA blunted VSMC proliferation, PCNA expression and migration mediated by ox-LDL. Tan IIA promoted miR-137 level, and miR-137 knockdown reversed the influences of Tan IIA on VSMC proliferation, PCNA expression and migration in the presence of ox-LDL. TRPC3 was verified to be targeted by miR-137. Moreover, TRPC3 silencing exacerbated the influences of Tan IIA on VSMC proliferation, apoptosis and migration, and it mitigated the inhibitive effects of miR-137 knockdown on function of Tan IIA. We confirmed for the first time that Tan IIA constrained ox-LDL-stimulated VSMC proliferation and migration via regulating the miR-137/TRPC3 axis, which provided a theoretical basis for the research and promotion of Tan IIA as a therapeutic drug.
Collapse
Affiliation(s)
- Wei Li
- Department of Vascular Surgery, The Second Hospital of Yinzhou District, Ningbo, Zhejiang Province, People's Republic of China
| | - Zhi Gao
- Department of Orthopedic Surgery, The Second Hospital of Yinzhou District, Ningbo, Zhejiang Province, People's Republic of China
| | - Qing-Long Guan
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, People's Republic of China
| |
Collapse
|
6
|
Zhou H, Tang W, Yang J, Peng J, Guo J, Fan C. MicroRNA-Related Strategies to Improve Cardiac Function in Heart Failure. Front Cardiovasc Med 2021; 8:773083. [PMID: 34869689 PMCID: PMC8639862 DOI: 10.3389/fcvm.2021.773083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Heart failure (HF) describes a group of manifestations caused by the failure of heart function as a pump that supports blood flow through the body. MicroRNAs (miRNAs), as one type of non-coding RNA molecule, have crucial roles in the etiology of HF. Accordingly, miRNAs related to HF may represent potential novel therapeutic targets. In this review, we first discuss the different roles of miRNAs in the development and diseases of the heart. We then outline commonly used miRNA chemical modifications and delivery systems. Further, we summarize the opportunities and challenges for HF-related miRNA therapeutics targets, and discuss the first clinical trial of an antisense drug (CDR132L) in patients with HF. Finally, we outline current and future challenges and potential new directions for miRNA-based therapeutics for HF.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianjun Guo
- Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| |
Collapse
|
7
|
Zhang S, Zhang Y, Wang X, Wu L, Shen J, Gu M, Fang Z. Effects of Shenfu Qiangxin Drink on H 2O 2-induced oxidative stress, inflammation and apoptosis in neonatal rat cardiomyocytes and possible underlying mechanisms. Exp Ther Med 2021; 21:553. [PMID: 33850525 PMCID: PMC8027745 DOI: 10.3892/etm.2021.9985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the effects of Shenfu Qiangxin Drink (SFQXD) on acute myocardial infarction (AMI) and identify the possible underlying mechanisms. Levels of reactive oxygen species (ROS) and inflammatory factors, including interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) in the blood samples of patients with AMI were measured using commercially available kits by visible spectrophotometry after SFQXD administration. The contents of phosphorylated (p-) forkhead box O3a (FOXO3a) was examined using an ELISA kit. In addition, a hydrogen peroxide (H2O2)-induced myocardial injury model was established in vitro using neonatal rat cardiomyocytes. Following treatment with SFQXD, the levels of intracellular ROS, cell apoptosis, oxidative stress- and inflammation-related markers were measured using commercially available kits by visible spectrophotometry. Additionally, western blot analysis was used to measure the expression of sirtuin-4 (SIRT4), p-FOXO3a, acetylated FOXO3a (ace-FOXO3a) and apoptosis-related genes (Bcl-2, Bax, BIM and cleaved caspase-3). Subsequently, to investigate the possible underlying regulatory mechanisms, SIRT4 expression was silenced by transfection with small hairpin RNA against SIRT4, following which changes in the extent of oxidative stress, inflammation and apoptosis were assessed. The levels of ROS and interleukin (IL)-1β were found to be significantly reduced, whilst FOXO3a phosphorylation was markedly increased following administration with SFQXD. In vitro, SFQXD dose-dependently inhibited H2O2-induced oxidative stress, inflammation and apoptosis in neonatal rat cardiomyocytes. In addition, FOXO3a phosphorylation was markedly upregulated whilst FOXO3a acetylation was downregulated following treatment of H2O2-induced primary neonatal cardiomyocytes with SFQXD. SIRT4 knockdown also markedly reversed the effects of SFQXD on oxidative stress, inflammation and apoptosis in neonatal rat cardiomyocytes. In conclusion, these findings demonstrated that SFQXD may alleviate oxidative stress-induced myocardial injury by potentially regulating SIRT4/FOXO3a signaling, suggesting that SFQXD may be of clinical value for the treatment of AMI.
Collapse
Affiliation(s)
- Sujie Zhang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Yiyan Zhang
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Xindong Wang
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Lixing Wu
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Jianping Shen
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Minglin Gu
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Zhuyuan Fang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
8
|
Wang L, Tian Y, Cao Y, Ma Q, Zhao S. MiR-137 promotes cell growth and inhibits extracellular matrix protein expression in H 2O 2-induced human trabecular meshwork cells by targeting Src. Neurosci Lett 2021; 755:135902. [PMID: 33865939 DOI: 10.1016/j.neulet.2021.135902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022]
Abstract
Glaucoma is a progressive optic neuropathy in more than 25 % of cases in patients with permanent blindness. The microRNA is implicated in modulating the cellular function of the trabecular meshwork (TM). The aim of this study is to investigate the role of miR-137 in glaucoma and illustrate the potential molecular mechanisms. We show that miR-137 was down-regulated in H2O2-induced human trabecular meshwork cells (HTMCs), and overexpression of miR-137 attenuated H2O2-induced cell growth inhibition, apoptosis and elevated extracellular matrix (ECM) protein expression. In addition, miR-137 blocked the activation of YAP/TAZ by directly targeting src. Overexpression of src or activation of the YAP/TAZ pathway partly abrogated the effects of miR-137 on H2O2-induced cell viability and apoptosis and dampened the inhibition effect on ECM protein expression. In conclusion, miR-137 promotes cell growth and inhibits extracellular matrix protein expression in H2O2-induced human trabecular meshwork cells via the YAP/TAZ pathway by targeting src. Hence, miR-137 might be used as a novel therapeutic target to treat glaucoma.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ophthalmology, Xi'an NO.1 Hospital, Xi'an, 710002, China
| | - Ying Tian
- Department of Ophthalmology, Xi'an NO.1 Hospital, Xi'an, 710002, China
| | - Yan Cao
- Department of Ophthalmology, Xi'an NO.1 Hospital, Xi'an, 710002, China
| | - Qiang Ma
- Department of Ophthalmology, Xi'an NO.1 Hospital, Xi'an, 710002, China
| | - Shuai Zhao
- Department of Ophthalmology, Xi'an NO.1 Hospital, Xi'an, 710002, China.
| |
Collapse
|
9
|
Li Q, Li Z, Fan Z, Yang Y, Lu C. Involvement of non‑coding RNAs in the pathogenesis of myocardial ischemia/reperfusion injury (Review). Int J Mol Med 2021; 47:42. [PMID: 33576444 PMCID: PMC7895537 DOI: 10.3892/ijmm.2021.4875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Myocardial ischemia/reperfusion injury (MIRI) may cause myocardial stunning, reperfusion arrhythmia, no‑reflow phenomenon and lethal reperfusion injury, which has a significant effect on the prognosis of patients undergoing thrombolytic agent therapy and percutaneous coronary intervention. Increasing evidence suggests that apoptosis, innate inflammation, oxidative stress, calcium overload and autophagy are involved in the pathogenesis of MIRI. Recent advancements in RNA sequencing technologies and genome‑wide analyses led to the finding of small non‑coding RNAs (ncRNAs). ncRNAs modulate cellular processes such as signal transduction, transcription, chromatin remodeling and post‑transcriptional modification. The effects of ncRNAs on cellular biology is more considerable than initially expected, and thus ncRNAs have gained increasing attention and focus in modern medical research. There are several types of ncRNAs, such as microRNAs (miRNAs), long non‑coding RNAs (lncRNAs) and circular RNAs (circRNAs), which have been shown to regulate gene expression at the transcription, post‑transcription and epigenetic levels. Dysregulation of ncRNAs, including miRNAs, lncRNAs and circRNAs, may participate in the molecular mechanisms of MIRI. The present review summarizes the characteristics and biological roles of miRNAs, lncRNAs and circRNAs, with particular emphasis on their role in MIRI, which show the novel complexity of ischemic hearts and may offer valuable insights into the pathogenesis of MIRI.
Collapse
Affiliation(s)
- Qi Li
- School of Medicine, Nankai University, Tianjin 300071
- Department of Cardiology, Tianjin First Center Hospital, Tianjin 300192
| | - Zhuqing Li
- School of Medicine, Nankai University, Tianjin 300071
- Department of Cardiology, Tianjin First Center Hospital, Tianjin 300192
| | - Zhixing Fan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000
| | - Ying Yang
- Department of Cardiology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Chengzhi Lu
- School of Medicine, Nankai University, Tianjin 300071
- Department of Cardiology, Tianjin First Center Hospital, Tianjin 300192
| |
Collapse
|
10
|
Elgebaly SA, Christenson RH, Kandil H, El-Khazragy N, Rashed L, Yacoub B, Eldeeb H, Ali M, Sharafieh R, Klueh U, Kreutzer DL. Nourin-Dependent miR-137 and miR-106b: Novel Early Inflammatory Diagnostic Biomarkers for Unstable Angina Patients. Biomolecules 2021; 11:368. [PMID: 33670982 PMCID: PMC7997347 DOI: 10.3390/biom11030368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Currently, no blood biomarkers exist that can diagnose unstable angina (UA) patients. Nourin is an early inflammatory mediator rapidly released within 5 min by reversible ischemic myocardium, and if ischemia persists, it is also released by necrosis. Nourin is elevated in acute coronary syndrome (ACS) patients but not in symptomatic noncardiac and healthy subjects. Recently, circulating microRNAs (miRNAs) have been established as markers of disease, including cardiac injury and inflammation. OBJECTIVES To profile and validate the potential diagnostic value of Nourin-dependent miR-137 (marker of cell damage) and miR-106b-5p (marker of inflammation) as early biomarkers in suspected UA patients and to investigate the association of their target and regulating genes. METHODS Using Nourin amino acid sequence, an integrated bioinformatics analysis was conducted. Analysis indicated that Nourin is a direct target for miR-137 and miR-106b-5p in myocardial ischemic injury. Two linked molecular networks of lncRNA/miRNAs/mRNAs were also retrieved, including CTB89H12.4/miR-137/FTHL-17 and CTB89H12.4/miR-106b-5p/ANAPC11. Gene expression profiling was assessed in serum samples collected at presentation to an emergency department (ED) from: (1) UA patients (n = 30) (confirmed by invasive coronary angiography with stenosis greater than 50% and troponin level below the clinical decision limit); (2) patients with acute ST elevation myocardial infarction (STEMI) (n = 16) (confirmed by persistent ST-segment changes and elevated troponin level); and 3) healthy subjects (n = 16). RESULTS Gene expression profiles showed that miR-137 and miR-106b-5p were significantly upregulated by 1382-fold and 192-fold in UA compared to healthy, and by 2.5-fold and 4.6-fold in STEMI compared to UA, respectively. Healthy subjects showed minimal expression profile. Receiver operator characteristics (ROC) analysis revealed that the two miRNAs were sensitive and specific biomarkers for assessment of UA and STEMI patients. Additionally, Spearman's correlation analysis revealed a significant association of miRNAs with the associated mRNA targets and the regulating lncRNA. CONCLUSIONS Nourin-dependent gene expression of miR-137 and miR-106b-5p are novel blood-based biomarkers that can diagnose UA and STEMI patients at presentation and stratify severity of myocardial ischemia, with higher expression in STEMI compared to UA. Early diagnosis of suspected UA patients using the novel Nourin biomarkers is key for initiating guideline-based therapy that improves patients' health outcomes.
Collapse
Affiliation(s)
- Salwa A. Elgebaly
- Research & Development, Nour Heart, Inc., Vienna, VA 22180, USA
- Department of Surgery, School of Medicine, UConn Health, Farmington, CT 06032, USA; (R.S.); (D.L.K.)
| | - Robert H. Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Hossam Kandil
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (B.Y.); (H.E.); (M.A.)
| | - Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology, Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11566, Egyp;
| | - Laila Rashed
- Department of Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Beshoy Yacoub
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (B.Y.); (H.E.); (M.A.)
| | - Heba Eldeeb
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (B.Y.); (H.E.); (M.A.)
| | - Mahmoud Ali
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (B.Y.); (H.E.); (M.A.)
| | - Roshanak Sharafieh
- Department of Surgery, School of Medicine, UConn Health, Farmington, CT 06032, USA; (R.S.); (D.L.K.)
- Cell & Molecular Tissue Engineering, LLC Farmington, CT 06032, USA;
| | - Ulrike Klueh
- Cell & Molecular Tissue Engineering, LLC Farmington, CT 06032, USA;
- Integrative Biosciences Center (IBio), Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Donald L. Kreutzer
- Department of Surgery, School of Medicine, UConn Health, Farmington, CT 06032, USA; (R.S.); (D.L.K.)
- Cell & Molecular Tissue Engineering, LLC Farmington, CT 06032, USA;
| |
Collapse
|
11
|
Zhao T, Qiu Z, Gao Y. MiR-137-3p exacerbates the ischemia-reperfusion injured cardiomyocyte apoptosis by targeting KLF15. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:1013-1024. [PMID: 31822940 DOI: 10.1007/s00210-019-01728-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a kind of the tissue damage caused by an abrupt re-supplying tissue with blood after a period of ischemia or hypoxia. It contributes to a wide range of pathological processes including kidney injury, circulatory arrest, and especially cardiovascular disease. However, the underlying pathological mechanism is not fully elucidated. Previously, extensive studies demonstrated that miRNAs participate in the pathogenesis of I/R injury, such as I/R-induced cardiomyocyte apoptosis. Here, we found that miR-137-3p, a mature form of miR-137, was up-regulated in I/R-injured cardiomyocytes of myocardial infarction patients. Deficiency of miR-137-3p partly alleviated the cardiomyocyte apoptosis and oxidative stress induced by hypoxia-reoxygenation (H/R) treatment in H9c2 cells. Also, we provided evidences that miR-137-3p directly targeted the 3' UTR of KLF15 mRNA to down-regulate its expression, and loss function of KLF15 significantly abolished the deleterious effects of ectopic miR-137-3p on cardiomyocytes both in vitro and in vivo. Collectively, these observations highlight a molecular perturbation in the pathogenesis of I/R injury in cardiomyocytes.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Cardiology, Peace hospital attached to Changzhi, Changzhi, 046000, Shanxi, People's Republic of China
| | - Zhi Qiu
- Department of Cardiology, Peace hospital attached to Changzhi, Changzhi, 046000, Shanxi, People's Republic of China
| | - Yonghua Gao
- Department of Cardiology, Peace hospital attached to Changzhi, Changzhi, 046000, Shanxi, People's Republic of China. .,Department of Cardiology, The Xiangya Hospital of central south university, Changsha, 410000, Hunan, People's Republic of China. .,Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, 89 Huaihai Road, Xuzhou, 221000, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Yang S, Luo J, Long Y, Du J, Xu G, Zhao L, Du Z, Luo W, Wang Y, He Z. Mixed Diets Reduce the Oxidative Stress of Common Carp ( Cyprinus carpio): Based on MicroRNA Sequencing. Front Physiol 2019; 10:631. [PMID: 31191340 PMCID: PMC6549001 DOI: 10.3389/fphys.2019.00631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
The rice-fish mode, a mode of ecological aquaculture, has become a popular research topic in recent years. The antioxidant capacity of fish can be affected by the type of diet. Three groups of adult common carp (initial weight 517.8 ± 50 g) were fed earthworm (group A), earthworm + duckweed (group M), and duckweed (group P). The antioxidant capacity of common carp (Cyprinus carpio) was evaluated by histopathological sectioning, antioxidant enzyme activity, and the miRNA transcriptome profile. The pathological changes in group M were lighter than those in groups C and A. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) significantly increased in group M, and the malondialdehyde content (MDA) significantly decreased (p < 0.05). Additionally, nine differentially expressed miRNAs (DEMs) were found between groups A and M, and eight DEMs found between groups P and M were identified in the liver of common carp. Five miRNAs were reported to be related to oxidative stress, including miR-137-3p, miR-143-3p, miR-146a-5p, miR-21-5p, and miR-125b-5p. Compared with group M, all five detected miRNAs were upregulated in group A, and four of the detected miRNAs were upregulated in group P. The targets of the five miRNAs were further predicted via functional analysis. Our study confirmed that omnivorous common carp exhibits stronger antioxidant capacity when feeding on both an animal diet and a plant diet.
Collapse
Affiliation(s)
- Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yalan Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jie Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - GangChun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Lin B, Feng D, Xu J. Cardioprotective effects of microRNA-18a on acute myocardial infarction by promoting cardiomyocyte autophagy and suppressing cellular senescence via brain derived neurotrophic factor. Cell Biosci 2019; 9:38. [PMID: 31168354 PMCID: PMC6509849 DOI: 10.1186/s13578-019-0297-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/20/2019] [Indexed: 12/18/2022] Open
Abstract
Background The prevention of cardiovascular diseases is a matter of great concern, of which acute myocardial infarction (AMI) remains one of the leading causes of death resulting in high morbidity worldwide. Emerging evidence highlights the importance of microRNAs (miRNAs) as functional regulators in cardiovascular disease. In this study, an AMI rat model was established in order to investigate the effect of miR-18a on cardiomyocyte autophagy and senescence in AMI and the underlying mechanism. Methods In the present study, an AMI model was induced by ligating the anterior descending branch of left coronary artery in Wistar rats. Dual-luciferase reporter gene assay was introduced for exploration on the relationship between miR-18a and brain derived neurotrophic factor (BDNF). The gain- and loss-of-function experiments were performed to elucidate miR-18a and BDNF effects on cell autophagy and senescence in AMI by transfecting hypoxia-exposed H9c2 cells with miR-18a inhibitor or mimic, siRNA against BDNF, or hypoxia-exposed H9c2 cell treatment with an agonist of the Akt/mTOR axis (LM22B-10). Results Upregulation of miR-18a was found in AMI, while downregulation was present in BDNF to activate the Akt/mTOR axis. Compared with the miR-18a inhibitor group, the expression of p-Akt and p-mTOR increased and the number of senescent cells increased in the miR-18a inhibitor + LM22B-10 group, and the expression of Beclin1, LC3-II, p62 decreased and autophagy decreased (all p < 0.05). Furthermore, this could be rescued by knocking down BDNF or Akt/mTOR axis activation by LM22B-10. Conclusion All in all, downregulation of miR-18a could promote BDNF expression, which offers protection against AMI by inactivating the Akt/mTOR axis, highlighting a promising therapeutic strategy for AMI treatment.
Collapse
Affiliation(s)
- Bin Lin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 1, Jianshe East Road, Zhengzhou, 450052 Henan People's Republic of China
| | - Deguang Feng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 1, Jianshe East Road, Zhengzhou, 450052 Henan People's Republic of China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 1, Jianshe East Road, Zhengzhou, 450052 Henan People's Republic of China
| |
Collapse
|
14
|
The MicroRNA Family Both in Normal Development and in Different Diseases: The miR-17-92 Cluster. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9450240. [PMID: 30854399 PMCID: PMC6378081 DOI: 10.1155/2019/9450240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/27/2018] [Accepted: 01/13/2019] [Indexed: 01/29/2023]
Abstract
An increasing number of research studies over recent years have focused on the function of microRNA (miRNA) molecules which have unique characteristics in terms of structure and function. They represent a class of endogenous noncoding single-strand small molecules. An abundance of miRNA clusters has been found in the genomes of various organisms often located in a polycistron. The miR-17-92 family is among the most famous miRNAs and has been identified as an oncogene. The functions of this cluster, together with the seven individual molecules that it comprises, are most related to cancers, so it would not be surprising that they are considered to have involvement in the development of tumors. The miR-17-92 cluster is therefore expected not only to be a tumor marker, but also to perform an important role in the early diagnosis of those diseases and possibly also be a target for tumor biotherapy. The miR-17-92 cluster affects the development of disease by regulating many related cellular processes and multiple target genes. Interestingly, it also has important roles that cannot be ignored in disease of the nervous system and circulation and modulates the growth and development of bone. Therefore, it provides new opportunities for disease prevention, clinical diagnosis, prognosis, and targeted therapy. Here we review the role of the miR-17-92 cluster that has received little attention in relation to neurological diseases, cardiac diseases, and the development of bone and tumors.
Collapse
|
15
|
Gao F, Lei J, Zhang Z, Yang Y, You H. Curcumin alleviates LPS-induced inflammation and oxidative stress in mouse microglial BV2 cells by targeting miR-137-3p/NeuroD1. RSC Adv 2019; 9:38397-38406. [PMID: 35540218 PMCID: PMC9075845 DOI: 10.1039/c9ra07266g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
Curcumin has been reported to exert protective effects on inflammation-related diseases, including spinal cord injury (SCI).
Collapse
Affiliation(s)
- Feng Gao
- Center for Biomedical Research on Pain (CBRP)
- Xi'an Jiaotong University Health Science Center
- Xi'an
- P. R. China
- Department of Physiology
| | - Jing Lei
- Center for Biomedical Research on Pain (CBRP)
- Xi'an Jiaotong University Health Science Center
- Xi'an
- P. R. China
| | - Zhaowei Zhang
- Center for Biomedical Research on Pain (CBRP)
- Xi'an Jiaotong University Health Science Center
- Xi'an
- P. R. China
| | - Yanling Yang
- Department of Physiology
- School of Medicine
- Yan'an University
- Yan'an
- P. R. China
| | - Haojun You
- Center for Biomedical Research on Pain (CBRP)
- Xi'an Jiaotong University Health Science Center
- Xi'an
- P. R. China
| |
Collapse
|
16
|
Zhang J, He J, Zhang L. The down-regulation of microRNA-137 contributes to the up-regulation of retinoblastoma cell proliferation and invasion by regulating COX-2/PGE2 signaling. Biomed Pharmacother 2018; 106:35-42. [PMID: 29945115 DOI: 10.1016/j.biopha.2018.06.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-137 (miR-137) plays an important role in the development and progression of many types of human cancers; however, the role of miR-137 in retinoblastoma (RB) remains unclear. In this study, we aimed to investigate the functional significance and molecular mechanisms of miR-137 in RB. We reported that miR-137 was frequently down-regulated in RB tissues and cell lines. The overexpression of miR-137 inhibited RB cell proliferation and invasion, while the suppression of miR-137 promoted RB cell proliferation and invasion. Bioinformatic analysis predicted that cyclooxygenase-2 (COX-2) was a potential target gene of miR-137, which was validated by a dual-luciferase reporter assay. Moreover, our results showed that miR-137 negatively regulated the expression of COX-2 and the production of prostaglandin E2 (PGE2) in RB cells. The knockdown of COX-2 suppressed the proliferation and invasion of RB cells as well as the production of PGE2. The overexpression of COX-2 significantly reversed the inhibitory effect of miR-137 overexpression on RB cell proliferation and invasion. Taken together, these results suggest that miR-137 suppresses the proliferation and invasion of RB cells by targeting COX-2/PGE2. Our study reveals a tumor suppressive role of miR-137 in the progression of RB and suggests miR-137 as a potentially effective therapeutic target for the treatment of RB.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Jing He
- Department of Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China.
| | - Le Zhang
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| |
Collapse
|
17
|
Feng L, Liu W, Yang J, Wang Q, Wen S. Effect of Hexadecyl Azelaoyl Phosphatidylcholine on Cardiomyocyte Apoptosis in Myocardial Ischemia-Reperfusion Injury: A Hypothesis. Med Sci Monit 2018; 24:2661-2667. [PMID: 29706617 PMCID: PMC5949054 DOI: 10.12659/msm.907578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reperfusion after myocardial ischemia can induce cardiomyocyte death, known as myocardial reperfusion injury. The pathophysiology of the process of reperfusion suggests the confluence multiple pathways. Recent studies have focused on the inflammatory response, which is considered to be the main mechanism during the process of myocardial ischemia-reperfusion injury and can cause cardiomyocyte apoptosis. Peroxisome proliferator-activated receptors gamma activated by endogenous ligands and exogenous ligand can decrease the inflammatory response in cardiomyocytes. Thiazolidinediones are synthetic, high-affinity, selective ligands for peroxisome proliferator-activated receptors gamma, and can inhibit the inflammatory response, decrease myocardial infarct size, and protect cardiac function. However, thiazolidinediones, including rosiglitazone and pioglitazone, can also contribute to adverse cardiovascular events such as congestive heart failure. Therefore, there are some limitations to the use of thiazolidinediones. Most endogenous ligands were of low affinity until hexadecyl azelaoyl phosphatidylcholine was identified as a high-affinity ligand and agonist for peroxisome proliferator-activated receptors gamma. Hexadecyl azelaoyl phosphatidylcholine binds recombinant peroxisome proliferator-activated receptors with an affinity (Kd(app) ≈40 nM) which is equivalent to rosiglitazone. Therefore, hexadecyl azelaoyl phosphatidylcholine is a specific peroxisome proliferator-activated receptors gamma agonist. Given these findings, we hypothesized that the use of hexadecyl azelaoyl phosphatidylcholine can activate the peroxisome proliferator-activated receptors gamma signal pathways and prevent the inflammatory response process of myocardial ischemia-reperfusion injury, with reduced cardiomyocyte apoptosis and death.
Collapse
Affiliation(s)
- Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Wennan Liu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jianzhou Yang
- Department of Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Qing Wang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shiwu Wen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
18
|
Matoušková P, Hanousková B, Skálová L. MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies. Int J Mol Sci 2018; 19:ijms19041199. [PMID: 29662007 PMCID: PMC5979329 DOI: 10.3390/ijms19041199] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Glutathione peroxidases (GPxs) belong to the eight-member family of phylogenetically related enzymes with different cellular localization, but distinct antioxidant function. Several GPxs are important selenoproteins. Dysregulated GPx expression is connected with severe pathologies, including obesity and diabetes. We performed a comprehensive bioinformatic analysis using the programs miRDB, miRanda, TargetScan, and Diana in the search for hypothetical microRNAs targeting 3′untranslated regions (3´UTR) of GPxs. We cross-referenced the literature for possible intersections between our results and available reports on identified microRNAs, with a special focus on the microRNAs related to oxidative stress, obesity, and related pathologies. We identified many microRNAs with an association with oxidative stress and obesity as putative regulators of GPxs. In particular, miR-185-5p was predicted by a larger number of programs to target six GPxs and thus could play the role as their master regulator. This microRNA was altered by selenium deficiency and can play a role as a feedback control of selenoproteins’ expression. Through the bioinformatics analysis we revealed the potential connection of microRNAs, GPxs, obesity, and other redox imbalance related diseases.
Collapse
Affiliation(s)
- Petra Matoušková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Barbora Hanousková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
19
|
Li H, Zhu Z, Liu J, Wang J, Qu C. MicroRNA-137 regulates hypoxia-induced retinal ganglion cell apoptosis through Notch1. Int J Mol Med 2017; 41:1774-1782. [PMID: 29286063 DOI: 10.3892/ijmm.2017.3319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
The apoptosis of retinal ganglion cells (RGCs) is a hallmark of several optic neuropathies. MicroRNAs (miRNAs) are recently identified regulators of various biological processes. However, the role of miRNAs in regulating RGC apoptosis remains largely unknown. We herein aimed to demonstrate that miR-137 acts as a hypoxia-responsive gene in RGCs that is downregulated under hypoxic conditions. It was observed that overexpression of miR-137 markedly aggravated hypoxia-induced cell apoptosis, whereas inhibition of miR-137 effectively protected RGCs against hypoxia-induced apoptosis. Hypoxia induced Notch1 expression and signaling activation, while blocking Notch signaling significantly aggravated hypoxia-induced cell apoptosis. Further data revealed that the pro-survival Akt signaling pathway was involved in miR-137-Notch signaling pathway-mediated RGC protection. Knockdown of Notch significantly reversed the effect of anti‑miR-137 on RGC protection and Akt signaling activation. In addition, blocking Akt signaling also significantly abrogated the protective effect of anti-miR-137 on hypoxia-induced cell injury. Overall, the results of the present study demonstrated that miR-137 targets Notch1 expression, revealing a novel link between miR-137 and Notch signaling, and suggesting that a miR-137/Notch1 axis may serve as a potential molecular target for the treatment of hypoxia-induced retinal diseases.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhongqiao Zhu
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianrong Liu
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianzhou Wang
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chaoyi Qu
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
20
|
Cui Y, Zhang X, You K, Guo Y, Liu C, Fang X, Geng L. Nanomechanical Characteristics of Cervical Cancer and Cervical Intraepithelial Neoplasia Revealed by Atomic Force Microscopy. Med Sci Monit 2017; 23:4205-4213. [PMID: 28859048 PMCID: PMC5590545 DOI: 10.12659/msm.903484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Understanding the biological features and developmental progress of cervical cancer is crucial for disease prevention. This study aimed to determine the nanomechanical signatures of cervical samples, ranging from cervicitis to cervical carcinomas, and to investigate the underlying mechanisms. Material/Methods Forty-five cervical biopsies at various pathological stages were subjected to atomic force microscopy (AFM) measurements. Cdc42 and collagen I were quantified using immunohistochemical staining to investigate their relationship with nanomechanical properties of cervical cancers and premalignant lesions. Results We found that the lower elasticity peaks (LEPs) in the high-grade squamous intraepithelial lesion (HSIL) group (21.24±3.83 kPa) and higher elasticity peaks (HEPs) in the cancer group (81.23±8.82 kPa) were upshifted compared with the control group (LEP at 8.51±0.18 kPa and HEP at 44.07±3.54 kPa). Furthermore, compared with the control [29.51±13.61 for cell division cycle 42 (Cdc42) expression and 28.61±17.65 for collagen I expression], immunohistochemical staining verified a significant increase of Cdc42 in the HSIL group (50.57±23.85) and collagen I (56.09±25.70) in the cancer group. In addition, using the Pearson correlation coefficient, Cdc42 expression tended to be positively correlated with LEP locations (r=0.63, P=0.012), while collagen I expression displayed a strong and positive correlation with HEP positions (r=0.88, P<0.001). Conclusions The nanomechanical properties of HSIL and cancer biopsies show unique features compared with controls, and these alterations are probably due to changes in cytoskeleton and extracellular matrix contents.
Collapse
Affiliation(s)
- Yueyi Cui
- Department of Obstetrics and Gynecology, Peking University 3rd Hospital, Beijing, China (mainland)
| | - Xuejie Zhang
- Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China (mainland)
| | - Ke You
- Department of Obstetrics and Gynecology, Peking University 3rd Hospital, Beijing, China (mainland)
| | - Yanli Guo
- Department of Obstetrics and Gynecology, Peking University 3rd Hospital, Beijing, China (mainland)
| | - Congrong Liu
- Department of Pathology, Peking University Health Science Centre, Beijing, China (mainland)
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China (mainland)
| | - Li Geng
- Department of Obstetrics and Gynecology, Peking University 3rd Hospital, Beijing, China (mainland)
| |
Collapse
|
21
|
Zhang X, Liu F, Wang Q, Geng Y. Overexpressed microRNA-506 and microRNA-124 alleviate H2O2-induced human cardiomyocyte dysfunction by targeting krüppel-like factor 4/5. Mol Med Rep 2017; 16:5363-5369. [PMID: 28849090 PMCID: PMC5647069 DOI: 10.3892/mmr.2017.7243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/06/2017] [Indexed: 01/23/2023] Open
Abstract
Krüppel-like factors (KLFs) regulate a wide variety of cellular functions and modulate pathological processes. In the present study, a post-translational mechanism of microRNAs (miRs) was investigated in H2O2-induced human cardiomyocyte (HCM) injury. In H2O2-cultured HCM cells, reactive oxygen species and apoptotic cells were measured via flow cytometry. miR-506/-124 mimics and inhibitors were transfected to induce gain or loss of miR-506/-124 function. Cell proliferation was analyzed by an MTT assay. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. The mRNA and protein expression levels were measured by reverse transcription-polymerse chain reaction analysis and western blotting, respectively. The results indicated that H2O2 induced significant apoptosis and increased the concentration of reactive oxygen species (ROS) in HCMs. H2O2 markedly upregulated the expression levels of KLF4 and KLF5, and downregulated the expression levels of miR-506 and miR-124 in the HCMs. In addition, bioinformatics analysis showed the potential miR-506 and miR-124 binding sites within the 3′-untranslated region of KLF4 and KLF5 in the HCMs. The overexpression of miR-506 and miR-124 inhibited the H2O2-induced upregulation of KLF4 and KLF5 in the HCMs. The overexpression of miR-506 and miR-214 reversed the H2O2-induced apoptosis and increase of ROS in the HCMs. In conclusion, the overexpression of miR-506 and miR-214 were confirmed to have a protective effect against H2O2-induced HCM injury by suppressing the expression of KLF4 and KLF5.
Collapse
Affiliation(s)
- Xiuzhou Zhang
- Department of Cardiology, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Fuyan Liu
- Department of Anesthesiology, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Qingqing Wang
- Department of Pharmacy, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Yuxue Geng
- Department of Cardiology, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| |
Collapse
|
22
|
Wang Y, Wang S, Lei M, Boyett M, Tsui H, Liu W, Wang X. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration. Br J Pharmacol 2017; 175:1362-1374. [PMID: 28574147 DOI: 10.1111/bph.13872] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
p21-activated kinase 1 (Pak1) is a member of the highly conserved family of serine/threonine protein kinases regulated by Ras-related small G-proteins, Cdc42/Rac1. It has been previously demonstrated to be involved in cardiac protection. Based on recent studies, this review provides an overview of the role of Pak1 in cardiac diseases including disrupted Ca2+ homoeostasis-related cardiac arrhythmias, adrenergic stress- and pressure overload-induced hypertrophy, and ischaemia/reperfusion injury. These findings demonstrate the important role of Pak1 mediated through the phosphorylation and transcriptional modification of hypertrophy and/or arrhythmia-related genes. This review also discusses the anti-arrhythmic and anti-hypertrophic, protective function of Pak1 and the beneficial effects of fingolimod (an FDA-approved sphingolipid drug), a Pak1 activator, and its ability to prevent arrhythmias and cardiac hypertrophy. These findings also highlight the therapeutic potential of Pak1 signalling in the treatment and prevention of cardiac diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yanwen Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Shunyao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ming Lei
- Department of Pharmacology, The University of Oxford, Oxford, UK
| | - Mark Boyett
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hoyee Tsui
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Wang S, Zhang T, Yang Z, Lin J, Cai B, Ke Q, Lan W, Shi J, Wu S, Lin W. Heme oxygenase-1 protects spinal cord neurons from hydrogen peroxide-induced apoptosis via suppression of Cdc42/MLK3/MKK7/JNK3 signaling. Apoptosis 2017; 22:449-462. [PMID: 27864650 DOI: 10.1007/s10495-016-1329-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanisms by which oxidative stress induces spinal cord neuron death has not been completely understood. Investigation on the molecular signal pathways involved in oxidative stress-mediated neuronal death is important for development of new therapeutics for oxidative stress-associated spinal cord disorders. In current study we examined the role of heme oxygenase-1 (HO-1) in the modulation of MLK3/MKK7/JNK3 signaling, which is a pro-apoptotic pathway, after treating primary spinal cord neurons with H2O2. We found that MLK3/MKK7/JNK3 signaling was substantially activated by H2O2 in a time-dependent manner, demonstrated by increase of activating phosphorylation of MLK3, MKK7 and JNK3. H2O2 also induced expression of HO-1. Transduction of neurons with HO-1-expressing adeno-associated virus before H2O2 treatment introduced expression of exogenous HO-1 in neurons. Exogenous HO-1 reduced phosphorylation of MLK3, MKK7 and JNK3. Consistent with its inhibitory effect on MLK3/MKK7/JNK3 signaling, exogenous HO-1 decreased H2O2-induced neuronal apoptosis and necrosis. Furthermore, we found that exogenous HO-1 inhibited expression of Cdc42, which is crucial for MLK3 activation. In addition, HO-1-induced down-regulation of MLK3/MKK7/JNK3 signaling might be related to up-regulation of microRNA-137 (mir-137). A mir-137 inhibitor alleviated the inhibitory effect of HO-1 on JNK3 activation. This inhibitor also increased neuronal death even when exogenous HO-1 was expressed. Therefore, our study suggests a novel mechanism by which HO-1 exerted its neuroprotective efficacy on oxidative stress.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Tao Zhang
- Department of Orthopedic Surgery, The Second Hospital of Fuzhou Affiliated to Xiamen University, Fuzhou, 350007, China
| | - Zhen Yang
- Department of Orthopedic Surgery, The People's Hospital of Guizhou Province, Guiyang, 550002, China
| | - Jianhua Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Bin Cai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Qingfeng Ke
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Wenbin Lan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Jinxing Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Shiqiang Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Wenping Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China.
| |
Collapse
|
24
|
Characterization of cold-associated microRNAs in the freeze-tolerant gall fly Eurosta solidaginis using high-throughput sequencing. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:95-100. [DOI: 10.1016/j.cbd.2016.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 11/18/2022]
|