1
|
Yu H, Chen L, Du P, Liu X, Xia Y. Effects of sirtuin 1 deficiency on trophoblasts and its implications in the pathogenesis of pre-eclampsia. J OBSTET GYNAECOL 2023; 43:2282103. [PMID: 37966393 DOI: 10.1080/01443615.2023.2282103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Sirtuin 1 (SIRT1) is mainly localised in syncytiotrophoblasts and cytotrophoblasts, and is involved in pregnancy regulation. However, data on the association between SIRT1 and pre-eclampsia (PE) remains limited. This study aimed to investigate the role of SIRT1 in PE pathophysiology. METHODS Placental SIRT1 expression, as well as serum SIRT1, placental growth factor (PlGF), and soluble FMS-like tyrosine kinase 1 (sFlt-1) levels, were measured using quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and enzyme-linked immunosorbent assays in 40 healthy pregnant women (NP group) and 40 women with severe PE (PE group). Additionally, the effects of SIRT1 on the migration, invasion, PlGF, and sFlt-1 secretion of HTR-8/SVneo cells were analysed. RESULTS SIRT1 expression was significantly reduced in the placenta of patients with severe PE compared with that in healthy pregnant women. Compared with the NP group, serum SIRT1 and PlGF expression was significantly lower in the PE group; however, the expression of serum sFlt-1 was significantly higher in the PE group. Correlation analysis showed that in the PE group, placental SIRT1 protein levels positively correlated with serum PlGF levels (r = 0.468, P = .002) and negatively correlated with serum sFlt-1 levels (r = -0.542, P < .001). Cells with downregulated SIRT1 had a significantly shorter migration distance and a prominently reduced number of invasive cells compared with the corresponding negative control group, suggesting that SIRT1 deficiency may inhibit the migration and invasive ability of HTR-8/SVneo cells. The opposite results were observed after transfection with lentivirus overexpressing SIRT1. Compared with the corresponding controls, cells with downregulated SIRT1 had significantly reduced PlGF levels and significantly increased sFlt-1 levels in the cell culture supernatants, whereas SIRT1 overexpression produced the opposite results. CONCLUSIONS SIRT1 deficiency may contribute to the pathogenesis of pre-eclampsia by reducing trophoblastic migration, invasion, and PlGF secretion and increasing sFlt-1 secretion.
Collapse
Affiliation(s)
- Hongbiao Yu
- Department of Obstetrics and Gynecology, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Ling Chen
- Department of Oncology, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Ping Du
- Department of Obstetrics and Gynecology, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Xianping Liu
- Department of Obstetrics and Gynecology, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Ying Xia
- Department of Obstetrics and Gynecology, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Zhou Q, Fang G, Pang Y, Wang X. Combination of Kaempferol and Docetaxel Induces Autophagy in Prostate Cancer Cells In Vitro and In Vivo. Int J Mol Sci 2023; 24:14519. [PMID: 37833967 PMCID: PMC10572510 DOI: 10.3390/ijms241914519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Docetaxel is a first-line chemotherapy drug used to treat advanced prostate cancer, but patients who have used it often face the challenges of drug resistance and side effects. Kaempferol is a naturally occurring flavonol; our previous studies have confirmed that it has excellent anti-prostate activity. To investigate the anti-prostate cancer effects of docetaxel in combination with kaempferol, we conducted experiments at the cellular and whole-animal level. Plate cloning assays showed that the combination of docetaxel and kaempferol had a synergistic effect in inhibiting the proliferation of prostate cancer cells. The combination of these two compounds was found to induce autophagy in prostate cancer cells via transmission electron microscopy, and changes in the expression of autophagy-related proteins via Western blot assays also confirmed the occurrence of autophagy at the molecular level. We also confirmed the anti-prostate cancer effect of docetaxel in combination with kaempferol in vivo by establishing a mouse xenograft prostate cancer model. Autophagy-related proteins were also examined in mouse tumor tissues and verified the presence of autophagy in mouse tumor tissues. The above cellular and animal data suggest that docetaxel in combination with kaempferol has significant anti-prostate cancer effects and that it works by inducing autophagy in cells.
Collapse
Affiliation(s)
- Qian Zhou
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Gang Fang
- Guangxi Key Laboratory of Applied Fundamental Research of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China
- Guangxi Higher Education Key Laboratory for the Research of Du-Related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Yuzhou Pang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
3
|
Onyiba CI, Scarlett CJ, Weidenhofer J. The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205118. [PMID: 36291902 PMCID: PMC9600935 DOI: 10.3390/cancers14205118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary There are diverse reports of the dual role of sirtuin genes and proteins in breast and prostate cancers. This review discusses the current information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, we highlight that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer. We also provide evidence of the direct regulation of sirtuins by miRNAs, highlighting the consequences of this regulation in breast and prostate cancer. Overall, this review reveals the potential value of sirtuins as biomarkers and/or targets for improved treatment of breast and prostate cancers. Abstract Mammalian sirtuins (SIRT1–7) are involved in a myriad of cellular processes, including apoptosis, proliferation, differentiation, epithelial-mesenchymal transition, aging, DNA repair, senescence, viability, survival, and stress response. In this review, we discuss the current information on the mechanistic roles of SIRT1–7 and their downstream effects (tumor promotion or suppression) in cancers of the breast and prostate. Specifically, we highlight the involvement of sirtuins in the regulation of various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of breast and prostate cancer. Additionally, we highlight the available information regarding SIRT1–7 regulation by miRNAs, laying much emphasis on the consequences in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Correspondence:
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
4
|
Zhang J, Peng J, Kong D, Wang X, Wang Z, Liu J, Yu W, Wu H, Long Z, Zhang W, Liu R, Hai C. Silent information regulator 1 suppresses epithelial-to-mesenchymal transition in lung cancer cells via its regulation of mitochondria status. Life Sci 2021; 280:119716. [PMID: 34119539 DOI: 10.1016/j.lfs.2021.119716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
AIMS Silent information regulator 1 (SIRT1) is a NAD+-dependent protein-modifying enzyme involved in regulating gene expression, DNA damage repair, cell metabolism, and mitochondrial functions. Given that it acts as both a tumor promoter and suppressor, the complex mechanisms underlying SIRT1 signaling in cancer remain controversial. Epithelial-to-mesenchymal transition (EMT) plays a key role in the progression of carcinogenesis and tumors metastasis. Studies have shown that mitochondrial defects are critical in EMT process, and SIRT1 is found to regulate the generation and energy metabolism of mitochondria. Here, we elucidate a novel mechanism by which SIRT1 affects EMT in lung cancer cells via its regulation on mitochondria. MAIN METHODS SIRT1 signaling was detected in TGF-β1-induced EMT and was found to regulate mitochondria status, including mitochondrial biogenesis-related protein levels as detected by western blotting, mitochondrial structure observed by transmission electron microscopy, and respiratory functions analyzed by a respiration capacity assay. The effects of modulating SIRT1 expression on EMT and migration of lung cancer cells or normal cells were evaluated by in vitro and in vivo models. KEY FINDINGS We found that the regulation of SIRT1 signaling on the biogenesis or functions of mitochondria was critical to EMT. Overexpression of SIRT1 reduced EMT or metastasis potential of lung cancer cells by improving the quantity and quality of mitochondria, whereas silencing SIRT1 promote EMT in cancer cells, even in normal cells by disturbing mitochondria status. SIGNIFICANCE Consequently, SIRT1 is an attractive therapeutic target for reversing EMT or tumor metastasis.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Peng
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Deqin Kong
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Wang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zhao Wang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Weihua Yu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Wu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zi Long
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Antiprostate Cancer Activity of Ineupatolide Isolated from Carpesium cernuum L. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5515961. [PMID: 33996996 PMCID: PMC8105106 DOI: 10.1155/2021/5515961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Objective The aim of the study was to investigate the antiprostate cancer effects and mechanism of ineupatolide (T-21), a natural product isolated from the Compositae plant Carpesium cernuum L., on PC-3 human prostate cancer cells. Methods The effect of T-21 on the proliferation of PC-3 cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell migration, and invasion experiments; the morphology of cell apoptosis was observed by Hoechst-propidium iodide staining; the effects of T-21 on PC-3 cell apoptosis and the cell cycle were evaluated by flow cytometry; and the effect of T-21 on the expression levels of phosphorylated protein kinase B (p-AKT), AKT, X-linked inhibitor of apoptosis protein (xlAP), procaspase-3, and poly (ADP-ribose) polymerase (PARP) in PC-3 cells was measured by western blotting. Results T-21 significantly inhibited the proliferation of cells, and its half-maximal inhibitory concentrations at 12, 24, and 48 h were 38.46 ± 1.01, 24.63 ± 0.70, and 7.36 ± 0.58 μM, respectively. T-21 may promote cell apoptosis in a concentration-dependent manner and block the cell cycle in the G2 and S phases. In addition, T-21 significantly reduced the protein expression levels of p-AKT, AKT, xlAP, procaspase-3, and PARP. Conclusion T-21 exhibits antiproliferation effects on PC-3 cells by promoting apoptosis and arresting the cell cycle in the G2 and S phases. The possible mechanism underlying its potential therapeutic effects against prostate cancer is related to the AKT/xlAP pathway.
Collapse
|
6
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Guo S, Ma B, Jiang X, Li X, Jia Y. Astragalus Polysaccharides Inhibits Tumorigenesis and Lipid Metabolism Through miR-138-5p/SIRT1/SREBP1 Pathway in Prostate Cancer. Front Pharmacol 2020; 11:598. [PMID: 32431616 PMCID: PMC7214922 DOI: 10.3389/fphar.2020.00598] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Astragalus polysaccharides (APS) is a traditional Chinese medicine and have been proved to involve in multiple biological processes, including inflammation, metabolism, and carcinogenics. However, the specific mechanisms by which APS on prostate cancer (PCa) remains largely unknown. In the current study, we found APS greatly inhibited the proliferation and invasion of PCa cells in a dose-dependent and time-dependent manner in vitro and in vivo. In addition, cellular triglyceride and cholesterol levels were also decreased significantly under APS treatment. Microarray data revealed the SIRT1 expression was markably suppressed under APS exposure. Mechanistic studies demonstrated that over-expression of SIRT1 inhibits the expression and nuclear translocation of SREBP1 via activating AMPK phosphorylation to suppress lipid metabolism. Otherwise, knockdown of SIRT1 significantly promotes AMPK/SREBP1 signaling and its associated target genes. Besides, we also found miR-138-5p was greatly inhibited the SIRT1 expression to regulating cell metabolism by targeting its 3′UTR region. To summarize, our findings suggested that APS inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathways in PCa.
Collapse
Affiliation(s)
- Shanqi Guo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baojie Ma
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xingkang Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Zhao L, Zhang J, Hu C, Wang T, Lu J, Wu C, Chen L, Jin M, Ji G, Cao Q, Jiang Y. Apigenin Prevents Acetaminophen-Induced Liver Injury by Activating the SIRT1 Pathway. Front Pharmacol 2020; 11:514. [PMID: 32425778 PMCID: PMC7212374 DOI: 10.3389/fphar.2020.00514] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/01/2020] [Indexed: 01/29/2023] Open
Abstract
Acetaminophen (APAP) overdose is the main cause of acute liver failure. Apigenin (API) is a natural dietary flavonol with high antioxidant capacity. Herein, we investigated protection by API against APAP-induced liver injury in mice, and explored the potential mechanism. Cell viability assays and mice were used to evaluate the effects of API against APAP-induced liver injury. Western blotting, immunofluorescence staining, RT-PCR, and Transmission Electron Microscope were carried out to determine the signalling pathways affected by API. Analysis of mouse serum levels of alanine/aspartate aminotransferase (ALT/AST), malondialdehyde (MDA), liver myeloperoxidase (MPO) activity, glutathione (GSH), and reactive oxygen species (ROS) revealed that API (80 mg/kg) owned protective effect on APAP-induced liver injury. Meanwhile, API ameliorated the decreased cell viability in L-02 cells incubated by APAP with a dose dependent. Furthermore, API promoted SIRT1 expression and deacetylated p53. Western blotting showed that API promoted APAP-induced autophagy, activated the NRF2 pathway, and inhibited the transcriptional activation of nuclear p65 in the presence of APAP. Furthermore, SIRT1 inhibitor EX-527 reduced protection by API against APAP-induced hepatotoxicity. Molecular docking results indicate potential interaction between API and SIRT1. API prevents APAP-induced liver injury by regulating the SIRT1-p53 axis, thereby promoting APAP-induced autophagy and ameliorating APAP-induced inflammatory responses and oxidative stress injury.
Collapse
Affiliation(s)
- Licong Zhao
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Second Clinical College, China Medical University, Shenyang, China
| | - Jiaqi Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan Lu
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenqu Wu
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingming Jin
- Shanghai University of Medicine & Health Sciences of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Cao
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Li Y, Chen X, Cui Y, Wei Q, Chen S, Wang X. Effects of SIRT1 silencing on viability, invasion and metastasis of human glioma cell lines. Oncol Lett 2019; 17:3701-3708. [PMID: 30930981 PMCID: PMC6425349 DOI: 10.3892/ol.2019.10063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/21/2019] [Indexed: 01/12/2023] Open
Abstract
Silent information regulator 1 (SIRT1), a member of the sirtuin family, is involved in the development of various types of tumor. Previous studies have revealed that SIRT1 has dual functions, as a promoter and an inhibitor, in certain tumors. However, the role of SIRT1 in invasion and metastasis of glioma cells and its associated signaling pathway remain unclear. The aim of the present study was to determine the effects of SIRT1 on these processes and on the epithelial-mesenchymal transition (EMT) in human glioma and adjacent tissues, and in the human glioma cell lines U87 and U251. SIRT1 expression in tissues was investigated using the reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. The U87 and U251 cell lines were divided into control and SIRT1-small interfering RNA (siRNA) groups. The Cell Counting Kit-8, cell invasion assays were used to evaluate the effects of SIRT1 silencing on cell viability, invasion and EMT. Results indicated that SIRT1 was highly expressed in glioma tissues compared with in adjacent brain tissues. In addition, SIRT1-siRNA significantly inhibited the viability and invasion of U87 and U251 cells. Furthermore, EMT analysis revealed that the expression levels of the mesenchymal markers fibronectin and vimentin were significantly lower in the SIRT1-siRNA group compared with in the control group. Conversely, expression levels of the epithelial markers epithelial cadherin and β-catenin were significantly higher in the SIRT1-siRNA group compared with in the control group. In conclusion, the results of the present study indicated that SIRT1 was positively associated with viability and invasion of U87 cells, potentially through EMT. These results suggested that SIRT1 may serve a crucial role in the proliferation and development of glioma.
Collapse
Affiliation(s)
- Yu Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Xin Chen
- Department of Orthopedics, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Yong Cui
- School of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650091, P.R. China
| | - Qun Wei
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Suiyun Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China.,Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Xiaofang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
10
|
Choupani J, Alivand MR, M Derakhshan S, Zaeifizadeh M, S Khaniani M. Oleuropein inhibits migration ability through suppression of epithelial-mesenchymal transition and synergistically enhances doxorubicin-mediated apoptosis in MCF-7 cells. J Cell Physiol 2018; 234:9093-9104. [PMID: 30317622 DOI: 10.1002/jcp.27586] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022]
Abstract
Distinct metastasis is one of the main causes of breast cancer (BC)-related mortality and epithelial-mesenchymal transition (EMT) is a primary step in metastasis dissemination. On the other hand, doxorubicin (DOX) is an effective chemotherapeutic agent against BC; unfortunately, its clinical use is limited by dose-dependent side effects. Therefore, extensive efforts have been dedicated to suppressing metastasis of BC and also to overcome DOX side effects together with keeping its antitumor efficacy. Studies supported the role of oleuropein (OLEU) in reducing DOX-induced side effects besides its antitumor actions. In this study, the antimigratory effect of OLEU was assessed and real-time PCR (RT-PCR) was used to detect OLEU effect on the expression level of EMT markers, in MCF-7 cells. The cytotoxic effect of OLEU and DOX was assessed by MTT assay, whereas the ratio of apoptosis was investigated by flow cytometry. The results showed that migration ability of MCF-7 cells remarkably decreased in OLEU treated group and RT-PCR results showed that OLEU may exert its antimigratory action by suppressing EMT through downregulation of sirtuin1 (SIRT1). Also, the results indicated that both OLEU and DOX were cytotoxic to MCF-7 cells, whereas DOX-OLEU cotreatment led to additive cytotoxicity and apoptosis rate. This study provides evidence regarding the suppressive role of OLEU on MCF-7 cells migration ability through suppression of EMT, and for the first time, it was proposed that SIRT1 downregulation can be involved in the OLEU antimigratory effect. Also, the findings demonstrated that OLEU can reduce DOX-induced side effects by reducing its effective dose.
Collapse
Affiliation(s)
- Jalal Choupani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad R Alivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima M Derakhshan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahmoud S Khaniani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Wang W, Wang J. Toll-Like Receptor 4 (TLR4)/Cyclooxygenase-2 (COX-2) Regulates Prostate Cancer Cell Proliferation, Migration, and Invasion by NF-κB Activation. Med Sci Monit 2018; 24:5588-5597. [PMID: 30098292 PMCID: PMC6180953 DOI: 10.12659/msm.906857] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Toll-like receptor 4 (TLR4)-mediated signaling has been implicated in invasion, metastasis, and survival of various cancers. Activation of TLR4 can promote cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB). However, little is known about the effects of TLR4/COX-2 in prostate cancer (PCa). Material/Methods In our study, TLR4 and COX-2 expressions were detected by quantitative real-time reverse transcription PCR (qRT-PCR) in PCa tissues (n=34). Cell proliferation was measured by Cell Counting Kit-8 (CCK-8) and carboxyfluorescein succinimidyl ester (CFSE) assays. The migration and invasion abilities were detected by wound healing and Transwell assays. qRT-PCR and western blot assays were performed to detect TLR4, COX-2, matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of matrix metalloproteinases (TIMP)-1, epithelial-cadherin (E-cadherin), vimentin, NF-κB (p65), and p-p65 expressions. Results The results revealed that TLR4 and COX-2 were upregulated in PCa tissues; Silencing of TLR4 or COX-2 inhibited PCa cell proliferation, migration, and invasion, and TLR4 siRNAs combined with COX-2 siRNAs synergistically suppressed PCa cell proliferation, migration, and invasion. Silencing of TLR4 or COX-2 also downregulated MMP-2, MMP-9, and E-cadherin expressions, and upregulated TIMP-1 and vimentin expressions. In addition, silencing of TLR4 or COX-2 inhibited p65 phosphorylation and had a synergistic effect. Conclusions We demonstrated that TLR4/COX-2 inhibits PCa cell proliferation, migration, and invasion by regulating NF-κB.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology Surgery, Tiantai People's Hospital, Taizhou, Zhejiang, China (mainland)
| | - Jiye Wang
- Department of Urology Surgery, Tiantai People's Hospital, Taizhou, Zhejiang, China (mainland)
| |
Collapse
|
12
|
Yang J, Tang H, Huang J, An H. Upregulation of CXCR7 Is Associated with Poor Prognosis of Prostate Cancer. Med Sci Monit 2018; 24:5185-5191. [PMID: 30047547 PMCID: PMC6074061 DOI: 10.12659/msm.906180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Prostate cancer (PCa) is a prevalent cancer in males. CXCR7 exhibits oncogenic actions in various cancers. The aim of our study was to explore the clinical significance of CXCR7 in patients with PCa. Material/Methods QRT-PCR was used to detect the expression level of CXCR7 in PCa tissues. The relationship between CXCR7 expression and clinicopathologic parameters was evaluated by chi-square test. Kaplan-Meier survival curve was used for the survival analysis of patients. Cox regression analyses were performed to assess the potential of CXCR7 as a prognosis biomarker for PCa patients. We performed MTT and Transwell assays to determine the effect of CXCR7 on proliferative and migratory abilities of PCa cells, respectively. Results CXCR7 was upregulated in PCa tissues (P<0.05) and was correlated with PSA (P=0.023), differentiation (P=0.022), and lymph node metastasis (P=0.018). The results of MTT and Transwell assays demonstrated that inhibition of CXCR7 suppressed PCa cells growth and migration. Additionally, high CXCR7 level predicted poor overall survival (log rank test, P=0.019). CXCR7 was a valuable prognostic biomarker for PCa patients (HR=2.271, 95%CI=1.093–4.719, P=0.028). Conclusions CXCR7 is an oncogene in PCa that can promote aggressive progression of PCa through enhancing proliferation and migration of the tumor cells. CXCR7 is an independent biomarker for the prognosis of PCa.
Collapse
Affiliation(s)
- Jihua Yang
- Department of Oncology, Naval General Hospital, Beijing, China (mainland)
| | - Hao Tang
- Department of Urology, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| | - Jingyu Huang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Huaijie An
- Central Laboratory, Naval General Hospital, Beijing, China (mainland)
| |
Collapse
|
13
|
You Z, Liu Y, Liu X. Nicotinamide N-methyltransferase enhances the progression of prostate cancer by stabilizing sirtuin 1. Oncol Lett 2018; 15:9195-9201. [PMID: 29805651 PMCID: PMC5958777 DOI: 10.3892/ol.2018.8474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022] Open
Abstract
A previous study demonstrated that nicotinamide N-methyltransferase (NNMT) is upregulated in the tissues of patients with prostate cancer (PCa); however, the specific underlying mechanism of this remains unclear. To begin with, the expression of NNMT was investigated in the peripheral blood of patients with PCa and of healthy control subjects. The results indicated that the expression level of NNMT was elevated in the peripheral blood and tissues of patients with PCa. Furthermore, the overexpression of NNMT enhanced PC-3 cell viability, invasion and migration capacity. Additionally, the overexpression of NNMT significantly increased the mRNA level of sirtuin 1 (SIRT1) in PC-3 cells. In addition, nicotinamide treatment significantly suppressed the expression of SIRT1 even in PC-3 cells transfected with adeno-associated virus-NNMT. Furthermore, the PC-3 cell invasion capacity was notably decreased by the nicotinamide treatment; however, such effects were largely abolished by the overexpression of NNMT in PC-3 cells. These data indicated that NNMT enhanced PC-3 cell migration and invasion mainly by regulating SIRT1 expression. In summary, the present study indicated that NNMT is an important regulator of SIRT1 expression in PC-3 cells and may be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Zhenyu You
- Department of Oncology, 202 Hospital of Chinese People's Liberation Army, Shenyang, Liaoning 110812, P.R. China
| | - Yang Liu
- Department of Oncology, 202 Hospital of Chinese People's Liberation Army, Shenyang, Liaoning 110812, P.R. China
| | - Xuefei Liu
- Department of Oncology, 202 Hospital of Chinese People's Liberation Army, Shenyang, Liaoning 110812, P.R. China
| |
Collapse
|
14
|
Choupani J, Mansoori Derakhshan S, Bayat S, Alivand MR, Shekari Khaniani M. Narrower insight to SIRT1 role in cancer: A potential therapeutic target to control epithelial-mesenchymal transition in cancer cells. J Cell Physiol 2018; 233:4443-4457. [PMID: 29194618 DOI: 10.1002/jcp.26302] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a highly networked cellular process which involves cell transition from the immotile epithelial to the motile mesenchymal phenotype, whereby cells lose their cell-cell adhesion and cell polarity. This important process is one of the underlying mechanisms for enabling invasion and metastasis of cancer cells which is considered as malignant phase of tumor progression. However, the molecular mechanisms of this process are not fully clarified. It is reported that Sirtuin1 (SIRT1), a NAD+ dependent class III histone deacetylase is associated with tumor metastasis through positive regulation of EMT in several types of cancers. Recent studies confirmed that up and down regulation of SIRT1 expression remarkably change the migration ability of different cancer cells in vitro and tumor metastasis in vivo. Also, according to this fact that carcinomas as the main human solid tumors, originate from different epithelial cell types, SIRT1 role in EMT has received a great attention due to its potential role in tumor development and metastasis. Therefore, SIRT1 has been proposed as a key regulator of cancer metastasis by promoting EMT, although little is known about the cleared effect of SIRT1 in this transition. Our aim in this review is to explain in more detail the role of SIRT1 in various signaling pathways related to carcinogenesis, with the focus on the promoting role of SIRT1 in EMT as a potential therapeutic target to control EMT and to prevent cancer progression.
Collapse
Affiliation(s)
- Jalal Choupani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Bayat
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Ruan L, Wang L, Wang X, He M, Yao X. SIRT1 contributes to neuroendocrine differentiation of prostate cancer. Oncotarget 2018; 9:2002-2016. [PMID: 29416748 PMCID: PMC5788616 DOI: 10.18632/oncotarget.23111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/11/2017] [Indexed: 01/04/2023] Open
Abstract
The epigenetic factor SIRT1 can promote prostate cancer progression, but it is unclear whether SIRT1 contributes to neuroendocrine differentiation. In this study, we showed that androgen deprivation can induce reactive oxygen species production and that reactive oxygen species, in turn, activate SIRT1 expression. The increased SIRT1 expression induces neuroendocrine differentiation of prostate cancer cells by activating the Akt pathway. In addition, the interaction between Akt and SIRT1 is independent of N-Myc and can drive the development of neuroendocrine prostate cancer when N-Myc is blocked. Furthermore, SIRT1 facilitates tumor maintenance, and targeting SIRT1 may reduce the tumor burden during androgen deprivation. Our findings suggest that SIRT1 is a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Lin Ruan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Urology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaosong Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ming He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoguang Yao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
16
|
Loss of miR-449a in ERG-associated prostate cancer promotes the invasive phenotype by inducing SIRT1. Oncotarget 2017; 7:22791-806. [PMID: 26988912 PMCID: PMC5008401 DOI: 10.18632/oncotarget.8061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/25/2016] [Indexed: 11/25/2022] Open
Abstract
Epigenetic regulation by SIRT1, a multifaceted NAD+-dependent protein deacetylase, is one of the most common factors modulating cellular processes in a broad range of diseases, including prostate cancer (CaP). SIRT1 is over-expressed in CaP cells, however the associated mechanism is not well understood. To identify whether specific microRNAs might mediate this linkage, we have screened a miRNA library for differential expression in ERG-associated CaP tissues. Of 20 differentially and significantly expressed miRNAs that distinguish ERG-positive tumors from ERG-negative tumors, we find miR-449a is highly suppressed in ERG-positive tumors. We establish that SIRT1 is a direct target of miR-449a and is also induced by ERG in ERG-associated CaP. Our data suggest that attenuation of miR-449a promotes the invasive phenotype of the ERG-positive CaP in part by inducing the expression of SIRT1 in prostate cancer cells. Furthermore, we also find that suppression of SIRT1 results in a significant reduction in ERG expression in ERG-positive CaP cells, indicating a feed-back regulatory loop associated with ERG, miR-449a and SIRT1. We also report that ERG suppresses p53 acetylation perhaps through miR-449a-SIRT1 axis in CaP cells. Our findings provide new insight into the function of miRNAs in regulating ERG-associated CaP. Thus, miR-449a activation or SIRT1 suppression may represent new therapeutic opportunity for ERG-associated CaP.
Collapse
|
17
|
SIRT1 regulates Mxd1 during malignant melanoma progression. Oncotarget 2017; 8:114540-114553. [PMID: 29383100 PMCID: PMC5777712 DOI: 10.18632/oncotarget.21457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/13/2017] [Indexed: 12/25/2022] Open
Abstract
In a murine melanoma model, malignant transformation promoted by a sustained stress condition was causally related to increased levels of reactive oxygen species resulting in DNA damage and massive epigenetic alterations. Since the chromatin modifier Sirtuin-1 (SIRT1) is a protein attracted to double-stranded DNA break (DSB) sites and can recruit other components of the epigenetic machinery, we aimed to define the role of SIRT1 in melanomagenesis through our melanoma model. The DNA damage marker, γH2AX was found increased in melanocytes after 24 hours of deadhesion, accompanied by increased SIRT1 expression and decreased levels of its target, H4K16ac. Moreover, SIRT1 started to be associated to DNMT3B during the stress condition, and this complex was maintained along malignant progression. Mxd1 was identified by ChIP-seq among the DNA sequences differentially associated with SIRT1 during deadhesion and was shown to be a common target of both, SIRT1 and DNMT3B. In addition, Mxd1 was found downregulated from pre-malignant melanocytes to metastatic melanoma cells. Treatment with DNMT inhibitor 5AzaCdR reversed the Mxd1 expression. Sirt1 stable silencing increased Mxd1 mRNA expression and led to down-regulation of MYC targets, such as Cdkn1a, Bcl2 and Psen2, whose upregulation is associated with human melanoma aggressiveness and poor prognosis. We demonstrated a novel role of the stress responsive protein SIRT1 in malignant transformation of melanocytes associated with deadhesion. Mxd1 was identified as a new SIRT1 target gene. SIRT1 promoted Mxd1 silencing, which led to increased activity of MYC oncogene contributing to melanoma progression.
Collapse
|
18
|
Lo UG, Lee CF, Lee MS, Hsieh JT. The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression. Int J Mol Sci 2017; 18:ijms18102079. [PMID: 28973968 PMCID: PMC5666761 DOI: 10.3390/ijms18102079] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Cheng-Fan Lee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Liu LG, Yan XB, Xie RT, Jin ZM, Yang Y. Stromal Expression of Vimentin Predicts the Clinical Outcome of Stage II Colorectal Cancer for High-Risk Patients. Med Sci Monit 2017; 23:2897-2905. [PMID: 28611349 PMCID: PMC5479442 DOI: 10.12659/msm.904486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Increased expression of vimentin in tissue samples from patients with colorectal cancer (CRC) has been previously demonstrated, but its prognostic significance remains controversial, and the clinical significance for patients with stage II CRC is still unknown. The aim of this study was to evaluate the expression of vimentin in CRC and its potential prognostic significance. Material/Methods We analyzed vimentin expression in 203 CRC tissue samples from patients with stage II cancer using immunohistochemistry, and correlated the findings with clinicopathological patient features. CRC-specific survival (CSS) and disease-free survival (DFS) were analyzed using the Kaplan-Meier method. Univariate and multivariate analysis was performed using the Cox proportional hazards method for survival. Results Vimentin expression was significantly correlated only with tumor (T) stage (p=0.024). Kaplan-Meier survival analysis indicated that vimentin expression could stratify the CSS and DFS of patients with stage II CRC at high risk (p=0.029, p=0.042, respectively), but not those of low-risk stage II patients (p=0.208, p=0.361, respectively). Univariate and multivariate analysis further revealed that stromal vimentin expression is an independent prognostic factor for CSS and DFS of high-risk stage II patients (p=0.043, p=0.022, respectively). Moreover, high-risk stage II patients with low stromal vimentin expression benefitted more from standard adjuvant chemotherapy than those with high stromal vimentin expression (CSS: p=0.012 vs. p=0.407; DFS: p=0.017 vs. p=0.420). Conclusions Our study suggests that stromal vimentin expression is a promising indicator for survival prediction and adjuvant chemotherapy response in patients with stage II CRC with high-risk factors for recurrence.
Collapse
Affiliation(s)
- Li-Guo Liu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China (mainland)
| | - Xue-Bing Yan
- Department of Medicine, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Ru-Ting Xie
- Department of Pathology, Shanghai Tenth Peoples' Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Zhi-Ming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth Peoples' Hospital, Shanghai, China (mainland)
| | - Yi Yang
- Department of Oncological Surgery, Kunshan Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu, China (mainland)
| |
Collapse
|
20
|
Wang Q, Yan C, Xin M, Han L, Zhang Y, Sun M. Sirtuin 1 (Sirt1) Overexpression in BaF3 Cells Contributes to Cell Proliferation Promotion, Apoptosis Resistance and Pro-Inflammatory Cytokine Production. Med Sci Monit 2017; 23:1477-1482. [PMID: 28346398 PMCID: PMC5380195 DOI: 10.12659/msm.900754] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background B lymphocyte hyperactivity is a main characteristic of systemic lupus erythematosus (SLE), and B lymphocytes play a prominent pathogenic role in the development and progression of SLE. The aim of this study was to investigate the role of Sirtuin 1 (Sirt1) in B lymphocytes. Material/Methods Mouse B lymphocytes BaF3 was transfected with Sirt1 vector or shRNA against Sirt1. Then the transfected cells viability and apoptosis were respectively determined by MTT assay and flow cytometry. In addition, the mRNA levels of three pro-inflammatory cytokines and p53 were detected by RT-PCR. Furthermore, the expression levels of nuclear factor-kappa B (NF-κB) pathway proteins were measured by Western blot. Results Overexpression of Sirt1 significantly increased cell proliferation (p<0.05 or p<0.01) and significantly suppressed apoptosis (p<0.05). The mRNA level expressions of interleukin 1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α) were significantly upregulated (p<0.05 or p<0.01), whereas p53 was significantly downregulated (p<0.05) by Sirt1 overexpression. In addition, the inhibitory subunit of NF-κB (IκBα) and p65 were significantly activated and phosphorylated (p<0.01 or p<0.001), and B-Cell CLL/Lymphoma 3 (Bcl-3) was significantly upregulated (p<0.05) by Sirt1 overexpression. Conclusions These results suggested that Sirt1 overexpression could promote BaF3 cell proliferation, inhibit apoptosis, and upregulate pro-inflammatory cytokines. The NF-κB pathway might be involved in these effects of Sirt1 on BaF3 cells, and Sirt1 might be a potential risk factor of SLE.
Collapse
Affiliation(s)
- Qian Wang
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Chao Yan
- Department of Rheumatology, Qilu Hospital of Shandong University (Qingdao Branch), Qingdao, Shandong, China (mainland)
| | - Miaomiao Xin
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Li Han
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yunqing Zhang
- Department of Rheumatology, Qilu Hospital of Shandong University (Qingdao Branch), Qingdao, Shandong, China (mainland)
| | - Mingshu Sun
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|