1
|
Guo X, Huang Z, Ge Q, Yang L, Liang D, Huang Y, Jiang Y, Pathak JL, Wang L, Ge L. Glipizide Alleviates Periodontitis Pathogenicity via Inhibition of Angiogenesis, Osteoclastogenesis and M1/M2 Macrophage Ratio in Periodontal Tissue. Inflammation 2023; 46:1917-1931. [PMID: 37289398 DOI: 10.1007/s10753-023-01850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
New consensus indicates type 2 diabetes mellitus (T2DM) and periodontitis as comorbidity and may share common pathways of disease progression. Sulfonylureas have been reported to improve the periodontal status in periodontitis patients. Glipizide, a sulfonylurea widely used in the treatment of T2DM, has also been reported to inhibit inflammation and angiogenesis. The effect of glipizide on the pathogenicity of periodontitis, however, has not been studied. We developed ligature-induced periodontitis in mice and treated them with different concentrations of glipizide and then analyzed the level of periodontal tissue inflammation, alveolar bone resorption, and osteoclast differentiation. Inflammatory cell infiltration and angiogenesis were analyzed using immunohistochemistry, RT-qPCR, and ELISA. Transwell assay and Western bolt analyzed macrophage migration and polarization. 16S rRNA sequencing analyzed the effect of glipizide on the oral microbial flora. mRNA sequencing of bone marrow-derived macrophages (BMMs) stimulated by P. gingivalis lipopolysaccharide (Pg-LPS) after treatment with glipizide was analyzed. Glipizide decreases alveolar bone resorption, periodontal tissue degradation, and the number of osteoclasts in periodontal tissue affected by periodontitis (PAPT). Glipizide-treated periodontitis mice showed reduced micro-vessel density and leukocyte/macrophage infiltration in PAPT. Glipizide significantly inhibited osteoclast differentiation in vitro experiments. Glipizide treatment did not affect the oral microbiome of periodontitis mice. mRNA sequencing and KEGG analysis showed that glipizide activated PI3K/AKT signaling in LPS-stimulated BMMs. Glipizide inhibited the LPS-induced migration of BMMs but promoted M2/M1 macrophage ratio in LPS-induced BMMs via activation of PI3K/AKT signaling. In conclusion, glipizide inhibits angiogenesis, macrophage inflammatory phenotype, and osteoclastogenesis to alleviate periodontitis pathogenicity suggesting its' possible application in the treatment of periodontitis and diabetes comorbidity.
Collapse
Affiliation(s)
- Xueqi Guo
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Zhijun Huang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Qing Ge
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Luxi Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Dongliang Liang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Yinyin Huang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Yiqin Jiang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Janak Lal Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linhu Ge
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China.
| |
Collapse
|
2
|
Gleiznys D, Kriauciunas A, Maminskas J, Stumbras A, Giedrimiene D, Niekrash C, Gleiznys A, Sakalauskiene J, Vitkauskiene A. Expression of Interleukin-17, Tumor Necrosis Factor-Alpha, and Matrix Metalloproteinase-8 in Patients with Chronic Peri-Implant Mucositis. Med Sci Monit 2021; 27:e932243. [PMID: 34697283 PMCID: PMC8556698 DOI: 10.12659/msm.932243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The present study aimed to evaluate whether non-surgical treatment interferes with clinical parameters and local patterns of osteo-immunoinflammatory mediators (IL-17 and TNF-α) and matrix metalloproteinase-8 (MMP-8) that are found in peri-implant crevicular fluid (PICF) and biofilms during the progression of peri-implant mucositis. Material/Methods We selected 30 patients with peri-implant caused mucositis before (MP) and after treatment (TP) and 30 healthy people (HP) for the analysis of IL-17, TNF-α cytokine, and MMP-8 production in PICF and for analysis of colonization dynamics of periodontopathogenic bacteria in supra- and subgingival plaque samples. The levels of IL-17 and MMP-8 concentrations in samples were assayed by enzymatic immunosorbent assay (ELISA) and TNF-α levels were determined by enzyme amplified sensitivity immunoassay (EASIA) method in PICF. The micro-IDent test was used to detect 11 species of periodontopathogenic bacteria in subgingival biofilm. Results We found significantly (P<0.001) higher levels of IL-17, TNF-α, and MMP-8 in the PICF of the MP and TP groups in comparison to the HP group. A significant association was found in MP associated with Parvimonas micra, as TNF-α in PICF was significantly higher (P=0.034) than in patients without Parvimonas micra. TNF-α levels in the samples of PICF showed a moderate correlation with clinical parameters, including plaque index (PI) (P=0.007) and MMP-8 levels (P=0.001), in the MP group. Conclusions Assessment of levels of inflammatory cytokines in PICF can aid in the identification of peri-implant mucositis, which can assist in early diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Darius Gleiznys
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Albertas Kriauciunas
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Maminskas
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Arturas Stumbras
- Department of Maxillofacial Surgery, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalia Giedrimiene
- School of Health and Natural Sciences and School of Pharmacy, University of Saint Joseph, West Hartford, CT, USA
| | - Christine Niekrash
- Frank H Netter MD School of Medicine Quinnipiac University, North Haven, CT, USA
| | - Alvydas Gleiznys
- Department of Dental and Maxillofacial Orthopedics, Lithuania University of Health Sciences, Kaunas, Lithuania
| | - Jurgina Sakalauskiene
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
3
|
Pathak JL, Fang Y, Chen Y, Ye Z, Guo X, Yan Y, Zha J, Liang D, Ke X, Yang L, Zhong W, Wang L, Wang L. Downregulation of Macrophage-Specific Act-1 Intensifies Periodontitis and Alveolar Bone Loss Possibly via TNF/NF-κB Signaling. Front Cell Dev Biol 2021; 9:628139. [PMID: 33748112 PMCID: PMC7969798 DOI: 10.3389/fcell.2021.628139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Periodontitis is a chronic inflammatory oral disease that affects almost half of the adult population. NF-κB activator 1 (Act1) is mainly expressed in immune cells, including macrophages, and modulates immune cells' function to regulate inflammation in inflammatory diseases. Macrophages play a vital role in the pathophysiology of periodontitis. However, the effect of macrophage-specific Act1 on periodontitis has not been investigated yet. This study aims to unravel the role of macrophage-specific Act1 on the pathophysiology of periodontitis. The expression of Act1 in healthy and periodontitis periodontal tissue was confirmed by immunohistochemistry. Macrophage-specific Act1 expression downregulated (anti-Act1) mice were developed by inserting anti-Act1 antisense oligonucleotides after the CD68 promoter of C57BL/6 mice. Ligature-induced periodontitis (LIP) was induced in anti-Act1 mice and wildtype mice. Micro-CT, histology, and TRAP staining analyzed the periodontal tissue status, alveolar bone loss, and osteoclast numbers. Immunohistochemistry, RT-qPCR, and ELISA analyzed the inflammatory cells infiltration, expression of inflammatory cytokines, and M1/M2 macrophage polarization. mRNA sequencing of in vitro bacterial lipopolysaccharide (LPS)-treated peritoneal macrophages analyzed the differentially expressed genes in anti-Act1 mice during inflammation. Anti-Act1 mice showed aggravated periodontitis and alveolar bone loss compared to wildtype. Periodontitis-affected periodontal tissue (PAPT) of anti-Act1 mice showed a higher degree of macrophage infiltration, and M1 macrophage polarization compared to wildtype. Levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), and macrophage activity-related factors (CCL2, CCL3, and CCL4) were robustly high in PAPT of anti-Act1 mice compared to wildtype. mRNA sequencing and KEGG analysis showed activated TNF/NF-κB signaling in LPS-treated macrophages from anti-Act1 mice. In vitro studies on LPS-treated peritoneal macrophages from anti-act1 mice showed a higher degree of cell migration and expression of inflammatory cytokines, macrophage activity-related factors, M1 macrophage-related factors, and TNF/NF-κB signaling related P-p65 protein. In conclusion, downregulation of macrophage-specific Act1 aggravated periodontitis, alveolar bone loss, macrophage infiltration, inflammation, and M1 macrophage polarization. Furthermore, LPS-treated macrophages from anti-Act1 mice activated TNF/NF-κB signaling. These results indicate the distinct role of macrophage-specific Act1 on the pathophysiology of periodontitis possibly via TNF/NF-κB signaling.
Collapse
Affiliation(s)
- Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Fang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Chen
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhitong Ye
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueqi Guo
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongyong Yan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Zha
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongliang Liang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuxian Ke
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luxi Yang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenchao Zhong
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Gleiznys D, Gleiznys A, Abraškevičiūtė L, Vitkauskienė A, Šaferis V, Sakalauskienė J. Interleukin-10 and Interleukin-1β Cytokines Expression in Leukocytes of Patients with Chronic Peri-Mucositis. Med Sci Monit 2019; 25:7471-7479. [PMID: 31586435 PMCID: PMC6792512 DOI: 10.12659/msm.915464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The purpose of the present research is to analyze the effect of polyphenols and flavonoids substrat (PFS) from plants Calendula officinalis, Salvia fruticosa, Achillea millefolium, and propolis as immunomodulatory in the production of interleukin (IL)-1ß and IL-10 in peripheral blood leukocytes medium (PBLM) in patients who were diagnosed with mucositis of peri-implant tissue compared to patients with healthy implant tissue. It was hypothesized that IL-1ß and IL-10 contribute to the inflammation processes noticed in the diseases of peri-implant tissues. MATERIAL AND METHODS Sixty non-smoking patients were included in this study: patients with healthy implants (HP group) and patients with peri-implant mucositis (MP group). Peri-mucositis was diagnosed by radiologic and clinical examination. The PBLM from MP were treated with PFS at various concentrations. The levels of IL-10 and IL-1ß excreted by the PBLM stimulated and unstimulated with viable Porphyromonas gingivalis test-tube were committed by the enzyme amplified immunoassay sensitivity method. RESULTS Unstimulated and stimulated PBLM and treatment with 5.0 mg/mL or 10.0 mg/mL of PFS in the MP group produced significantly higher levels IL-10 (P<0.001) that analogous mediums of the HP group. The levels of IL-1ß decreased more considerably in the stimulated PBLM of the MP group than in those of HP group (P<0.001) after the treatment with PFS at only 10.0 mg/mL concentration. CONCLUSIONS Theses results suggest that the solution of PFS might offer a new potential for the development of a new therapeutic path to prevent and treat peri-implant mucositis.
Collapse
Affiliation(s)
- Darius Gleiznys
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alvydas Gleiznys
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lina Abraškevičiūtė
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Astra Vitkauskienė
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Viktoras Šaferis
- Department of Physics, Mathematics and Biophysics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgina Sakalauskienė
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
5
|
Moghadam SA, Bazi A, Miri-Moghaddam M, Miri-Moghaddam E. Mannose binding lectin-2 gene functional polymorphisms in chronic periodontitis patients; a report from Iran. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.05.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Souza Filho MD, Medeiros JV, Vasconcelos DF, Silva DA, Leódido AC, Fernandes HF, Silva FR, França LF, Lenardo D, Pinto GR. Orabase formulation with cashew gum polysaccharide decreases inflammatory and bone loss hallmarks in experimental periodontitis. Int J Biol Macromol 2018; 107:1093-1101. [DOI: 10.1016/j.ijbiomac.2017.09.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023]
|