1
|
Wang H, Gao Y, Guo F, Zhou P, Ma Z, Chi K, Ye J, Sun H, He X, Shi B, Wang Y, Han Z. ERβ-regulated circATP2B1/miR-204-3p/TWIST1 positive feedback loop facilitates epithelial to mesenchymal transition in clear cell renal cell carcinoma. Transl Oncol 2025; 51:102213. [PMID: 39586165 PMCID: PMC11626627 DOI: 10.1016/j.tranon.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Our previous studies have shown that estrogen receptor beta (ERβ) can promote the progression of clear cell renal cell carcinoma (ccRCC) by downregulating the expression of circATP2B1 and miR-204-3p. Here, we found that ERβ might promote the epithelial-mesenchymal transition(EMT) of ccRCC by modulating the circATP2B1/miR-204-3p/TWIST1(Twist family basic helix-loop-helix transcription factor 1) signaling pathway. METHODS We utilized bioinformatics analysis to determine the clinical significance of TWIST1 in ccRCC. The expression of TWIST1 in ccRCC tissues and cells was examined using immunohistochemistry, real-time quantitative polymerase chain reaction and western blotting assay. Chromatin Immunoprecipitation assay were conducted to validate the relationship between ERβ and TWIST1. Luciferase reporter gene assays were employed to validate the binding targets of TWIST1 and miR-204-3p. The role of TWIST1 in ccRCC was studied through in vitro and in vivo experiments. Transwell assays and wound healing assays were used to assess the impact of TWIST1 on the invasive and migratory abilities of ccRCC cells. RESULTS Mechanism analysis revealed that miR-204-3p can inhibit TWIST1 by targeting its 3' untranslated region. Additionally, TWIST1 can promote ERβ transcription by directly binding to transcription factor binding site in the ERβ promoter region, forming a positive feedback loop. These in vitro data were further validated in an in vivo mouse model. Importantly, analysis of data from the TCGA-KIRC database further confirmed the above in vitro/in vivo findings. CONCLUSIONS Together, our results suggest that ERβ/circATP2B1/miR-204-3p/TWIST1 can promote EMT by forming a positive feedback loop, thus promoting the progression of ccRCC. Targeting this newly identified signaling pathway may more effectively control the progression of ccRCC.
Collapse
Affiliation(s)
- Hu Wang
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Urology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314033, China
| | - Yilong Gao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengran Guo
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Pengfei Zhou
- Zhengding County People's Hospital, Shijiazhuang, China
| | - Ziyang Ma
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Kui Chi
- Department of Vascular surgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jiaqing Ye
- Department of Clinical laboratory, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Hao Sun
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xingyu He
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Bei Shi
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yaxuan Wang
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Zhenwei Han
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
2
|
Roshan MK, Afshari AR, Mirzavi F, Mousavi SH, Soukhtanloo M. Combretastatin A-4 suppresses the invasive and metastatic behavior of glioma cells and induces apoptosis in them: in-vitro study. Med Oncol 2023; 40:331. [PMID: 37838642 DOI: 10.1007/s12032-023-02197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
The most common primary brain malignancy, glioblastoma multiforme, is tremendously resistant to conventional treatments due to its potency for metastasis to surrounding brain tissue. Temozolomide is a chemotherapeutic agent that currently is administrated during the treatment procedure. Studies have attempted to investigate new agents with higher effectiveness and fewer side effects. Combretastatin A-4 (CA-4), a natural compound derived from Combretum caffrum, has been recently considered for its potent antitumor activities in a wide variety of preclinical solid tumor models. Our findings have shown that CA-4 exerts potent anti-proliferative and apoptotic effects on glioma cells, and ROS generation may be involved in these cellular events. CA-4 has imposed G2 arrest in U-87 cells. We also observed that CA-4 significantly reduced the migration and invasion capability of U-87 cells. Furthermore, the gene expression and enzyme activity of MMP-2 and MMP-9 were significantly inhibited in the presence of CA-4. We also observed a considerable decrease in PI3K and Akt protein expression following treatment with CA-4. In conclusion, our findings showed significant apoptogenic and anti-metastatic effects of CA-4 on glioma cells and also suggested that the PI3K/Akt/MMP-2/-9 and also ROS pathway might play roles in these cellular events.
Collapse
Affiliation(s)
- Mostafa Karimi Roshan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Hadi Mousavi
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tang Y, Yang H, Yu J, Li Z, Xu Q, Xu Q, Jia G, Sun N. Network pharmacology-based prediction and experimental verification of the involvement of the PI3K/Akt pathway in the anti-thyroid cancer activity of crocin. Arch Biochem Biophys 2023; 743:109643. [PMID: 37211223 DOI: 10.1016/j.abb.2023.109643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Crocin, a unique water-soluble carotenoid extracted from saffron, is known to exert anticancer activity against various cancer types, including thyroid cancer (TC). However, the detailed mechanism underlying the anticancer effect of crocin in TC needs further exploration. Targets of crocin and targets associated with TC were acquired from public databases. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed using DAVID. Cell viability and proliferation were assessed using MMT and EdU incorporation assays, respectively. Apoptosis was assessed using TUNEL and caspase-3 activity assays. The effect of crocin on phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) was explored by western blot analysis. A total of 20 overlapping targets were identified as candidate targets of crocin against TC. GO analysis showed that these overlapping genes were significantly enriched in the positive regulation of cell proliferation. KEGG results showed that the PI3K/Akt pathway was involved in the effect of crocin against TC. Crocin treatment inhibited cell proliferation and promoted apoptosis in TC cells. Moreover, we found that crocin inhibited the PI3K/Akt pathway in TC cells. 740Y-P treatment reversed the effects of crocin on TC cells. In conclusion, crocin suppressed proliferation and elicited apoptosis in TC cells via inactivation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yan Tang
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, Henan, 473065, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China.
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Quanxiao Xu
- Department of Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Qiu Xu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Na Sun
- Department of Invasive Technology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223302, China
| |
Collapse
|
4
|
Guimarães CDJ, Carneiro TR, Frederico MJS, de Carvalho GGC, Little M, Freire VN, França VLB, do Amaral DN, Guedes JDS, Barreiro EJ, Lima LM, Barros-Nepomuceno FWA, Pessoa C. Pharmacokinetic Profile Evaluation of Novel Combretastatin Derivative, LASSBio-1920, as a Promising Colorectal Anticancer Agent. Pharmaceutics 2023; 15:pharmaceutics15041282. [PMID: 37111767 PMCID: PMC10144566 DOI: 10.3390/pharmaceutics15041282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
LASSBio-1920 was synthesized due to the poor solubility of its natural precursor, combretastatin A4 (CA4). The cytotoxic potential of the compound against human colorectal cancer cells (HCT-116) and non-small cell lung cancer cells (PC-9) was evaluated, yielding IC50 values of 0.06 and 0.07 μM, respectively. Its mechanism of action was analyzed by microscopy and flow cytometry, where LASSBio-1920 was found to induce apoptosis. Molecular docking simulations and the enzymatic inhibition study with wild-type (wt) EGFR indicated enzyme-substrate interactions similar to other tyrosine kinase inhibitors. We suggest that LASSBio-1920 is metabolized by O-demethylation and NADPH generation. LASSBio-1920 demonstrated excellent absorption in the gastrointestinal tract and high central nervous system (CNS) permeability. The pharmacokinetic parameters obtained by predictions indicated that the compound presents zero-order kinetics and, in a human module simulation, accumulates in the liver, heart, gut, and spleen. The pharmacokinetic parameters obtained will serve as the basis to initiate in vivo studies regarding LASSBio-1920's antitumor potential.
Collapse
Affiliation(s)
- Celina de Jesus Guimarães
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
- Pharmacy Sector, Oncology Control Foundation of the State of Amazonas (FCECON), Manaus 69040-010, AM, Brazil
| | - Teiliane Rodrigues Carneiro
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
| | - Marisa Jadna Silva Frederico
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
| | - Guilherme G C de Carvalho
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
| | - Matthew Little
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceara (UFC), Fortaleza 60440-900, CE, Brazil
| | - Victor L B França
- Department of Physics, Federal University of Ceara (UFC), Fortaleza 60440-900, CE, Brazil
| | - Daniel Nascimento do Amaral
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil
| | - Jéssica de Siqueira Guedes
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil
| | - Eliezer J Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil
| | - Lídia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil
| | - Francisco W A Barros-Nepomuceno
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
- Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Redenção 62790-000, CE, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
| |
Collapse
|
5
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
6
|
Yang H, He C, Bi Y, Zhu X, Deng D, Ran T, Ji X. Synergistic effect of VEGF and SDF-1α in endothelial progenitor cells and vascular smooth muscle cells. Front Pharmacol 2022; 13:914347. [PMID: 35910392 PMCID: PMC9335858 DOI: 10.3389/fphar.2022.914347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent agonist of angiogenesis that induces proliferation and differentiation of endothelial progenitor cells (EPCs) after vascular injury. Previous studies have suggested that stromal cell-derived factor 1-alpha (SDF-1α) and VEGF have a synergistic effect on vascular stenosis. The aim of the present study was to investigate whether VEGF and SDF-1α act synergistically in EPCs and vascular smooth muscle cells (VSMCs). In this study, EPCs were isolated from rat bone marrow and their morphology and function were studied. Subsequently, VEGF was delivered into EPCs using an adenoviral vector. Tube formation, migration, proliferation, and apoptosis of VEGF-overexpressing EPCs was analyzed. Then, EPCs were co-cultured with VSMCs in the presence or absence of SDF-1α, the migration, proliferation, apoptosis, and differentiation capacity of EPCs and VSMCs were analyzed respectively. The isolated EPCs showed typical morphological features, phagocytic capacity, and expressed surface proteins. While stable expression of VEGF remarkably enhanced tube formation, migration, and proliferation capacity of EPCs, apoptosis was decreased. Moreover, the proliferation, migration, and differentiation capacity of EPCs in the co-cultured model was enhanced in the presence of SDF-1α, and apoptosis was decreased. However, these effects were reversed in VSMCs. Therefore, our results showed that VEGF and SDF-1α synergistically increased the migration, differentiation, and proliferation capabilities of EPCs, but not VSMCs. This study suggests a promising strategy to prevent vascular stenosis.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Cancan He
- Department of Pediatrics, The Affiliated Hospital of Zunyi Medical University, Guizhou Children’s Hospital, Zunyi, GZ, China
| | - Yang Bi
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Deng
- School of Medical Imaging, Changsha Medical University, Changsha, China
| | - Tingting Ran
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojuan Ji
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- *Correspondence: Xiaojuan Ji,
| |
Collapse
|
7
|
Zhu X, Wang X, Gong Y, Deng J. E-cadherin on epithelial-mesenchymal transition in thyroid cancer. Cancer Cell Int 2021; 21:695. [PMID: 34930256 PMCID: PMC8690896 DOI: 10.1186/s12935-021-02344-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid carcinoma is a common malignant tumor of endocrine system and head and neck. Recurrence, metastasis and high malignant expression after routine treatment are serious clinical problems, so it is of great significance to explore its mechanism and find action targets. Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy and invasion. One key change in tumour EMT is low expression of E-cadherin. Therefore, this article reviews the expression of E-cadherin in thyroid cancers (TC), discuss the potential mechanisms involved, and outline opportunities to exploit E-cadherin on regulating the occurrence of EMT as a critical factor in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Xiaoping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China.
| | - Yifei Gong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Junlin Deng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| |
Collapse
|
8
|
Pérez-Villanueva J, Matadamas-Martínez F, Yépez-Mulia L, Pérez-Koldenkova V, Leyte-Lugo M, Rodríguez-Villar K, Cortés-Benítez F, Macías-Jiménez AP, González-Sánchez I, Romero-Velásquez A, Palacios-Espinosa JF, Soria-Arteche O. Synthesis and Cytotoxic Activity of Combretastatin A-4 and 2,3-Diphenyl-2 H-indazole Hybrids. Pharmaceuticals (Basel) 2021; 14:ph14080815. [PMID: 34451912 PMCID: PMC8401203 DOI: 10.3390/ph14080815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer is the second leading cause of death, after cardiovascular diseases. Different strategies have been developed to treat cancer; however, chemotherapy with cytotoxic agents is still the most widely used treatment approach. Nevertheless, drug resistance to available chemotherapeutic agents is still a serious problem, and the development of new active compounds remains a constant need. Taking advantage of the molecular hybridization approach, in the present work we designed, synthesized, and tested the cytotoxic activity of two hybrid compounds and seven derivatives based on the structure of combretastatin A-4 and 2,3-diphenyl-2H-indazole. Practical modifications of reported synthetic protocols for 2-pheny-2H-indazole and 2,3-dipheny-2H-indazole derivatives under microwave irradiation were implemented. The cytotoxicity assays showed that our designed hybrid compounds possess strong activity, especially compound 5, which resulted even better than the reference drug cisplatin against HeLa and SK-LU-1 cells (IC50 of 0.16 and 6.63 µM, respectively), and it had similar potency to the reference drug imatinib against K562 cells. Additionally, in silico and in vitro studies strongly suggest tubulin as the molecular target for hybrid compound 5.
Collapse
Affiliation(s)
- Jaime Pérez-Villanueva
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México 04960, Mexico; (F.M.-M.); (F.C.-B.); (A.P.M.-J.); (J.F.P.-E.); (O.S.-A.)
- Correspondence: (J.P.-V.); (L.Y.-M.); Tel.: +52-5-54-83-72-59 (J.P.-V.); Fax: +52-5-55-94-79-29 (J.P.-V.)
| | - Félix Matadamas-Martínez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México 04960, Mexico; (F.M.-M.); (F.C.-B.); (A.P.M.-J.); (J.F.P.-E.); (O.S.-A.)
- Maestría y Doctorado en Ciencias Farmacéuticas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México 04960, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico
- Correspondence: (J.P.-V.); (L.Y.-M.); Tel.: +52-5-54-83-72-59 (J.P.-V.); Fax: +52-5-55-94-79-29 (J.P.-V.)
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico;
| | - Martha Leyte-Lugo
- Catedrático CONACYT Comisionado a Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México 04960, Mexico; (M.L.-L.); (I.G.-S.)
| | - Karen Rodríguez-Villar
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México 04960, Mexico;
| | - Francisco Cortés-Benítez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México 04960, Mexico; (F.M.-M.); (F.C.-B.); (A.P.M.-J.); (J.F.P.-E.); (O.S.-A.)
| | - Ana Perla Macías-Jiménez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México 04960, Mexico; (F.M.-M.); (F.C.-B.); (A.P.M.-J.); (J.F.P.-E.); (O.S.-A.)
| | - Ignacio González-Sánchez
- Catedrático CONACYT Comisionado a Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México 04960, Mexico; (M.L.-L.); (I.G.-S.)
| | - Ariana Romero-Velásquez
- Maestría en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico;
| | - Juan Francisco Palacios-Espinosa
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México 04960, Mexico; (F.M.-M.); (F.C.-B.); (A.P.M.-J.); (J.F.P.-E.); (O.S.-A.)
| | - Olivia Soria-Arteche
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México 04960, Mexico; (F.M.-M.); (F.C.-B.); (A.P.M.-J.); (J.F.P.-E.); (O.S.-A.)
| |
Collapse
|
9
|
Bulotta S, Capriglione F, Celano M, Pecce V, Russo D, Maggisano V. Phytochemicals in thyroid cancer: analysis of the preclinical studies. Endocrine 2021; 73:8-15. [PMID: 33587255 DOI: 10.1007/s12020-021-02651-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/23/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE In the search for novel effective compounds to use in thyroid cancer (TC) unresponsive to current treatment, attention has recently focused on plant-derived compounds with anticancer activity. In this review, we discuss the preclinical studies demonstrating phytochemical activity against thyroid cancer cells. RESULTS/CONCLUSIONS In particular, we describe their antiproliferative properties or ability to re-induce iodine retention, thus supporting their potential use as single agents or adjuvants in radioiodine-resistant thyroid cancer treatment.
Collapse
Affiliation(s)
- Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Francesca Capriglione
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Marilena Celano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Diego Russo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Germaneto, 88100, Catanzaro, Italy.
| | - Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Germaneto, 88100, Catanzaro, Italy
| |
Collapse
|
10
|
Peng Y, Xiong R, Li Z, Peng J, Xie ZZ, Lei XY, He D, Tang G. Design, synthesis, and biological evaluation of 3',4',5'-trimethoxy evodiamine derivatives as potential antitumor agents. Drug Dev Res 2021; 82:1021-1032. [PMID: 33600007 DOI: 10.1002/ddr.21806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 11/12/2022]
Abstract
A series of compounds bearing 3',4',5'-trimethoxy module into the core structure of evodiamine were designed and synthesized. The synthesized compounds were screened in vitro for their antitumor potential. MTT results showed that compounds 14a-14c and 14i-14j had significant effects, with compound 14h being the most prominent, with an IC50 value of 3.3 ± 1.5 μM, which was lower than evodiamine and 5-Fu. Subsequent experiments further confirmed that compound 14h could inhibit cell proliferation and migration, and induce G2/M phase arrest to inhibit the proliferation of HGC-27 cells, which is consistent with the results of the cytotoxicity experiment. Besides, 14h could inhibit microtubule assembly and might kill tumor cells by inhibiting VEGF and glycolysis. All experimental results indicate that compound 14h might be a potential drug candidate for the treatment of gastric cancer and was worthy of further study.
Collapse
Affiliation(s)
- Yijiao Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, China
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, China
| | - Zhen Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, China
| | - Junmei Peng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, China
| | - Zhi-Zhong Xie
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, China
| | - Xiao-Yong Lei
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, China
| | - Dongxiu He
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, China
| |
Collapse
|
11
|
Hua R, Zhang X, Li W, Lian W, Liu Q, Gao D, Wang Y, Lei M. Ssc-miR-21-5p regulates endometrial epithelial cell proliferation, apoptosis and migration via the PDCD4/AKT pathway. J Cell Sci 2020; 133:jcs248898. [PMID: 33097608 DOI: 10.1242/jcs.248898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Endometrial receptivity plays a vital role in successful embryo implantation in pigs. MicroRNAs (miRNAs), known as regulators of gene expression, have been implicated in the regulation of embryo implantation. However, the role of miRNAs in endometrial receptivity during the pre-implantation period remains elusive. In this study, we report that the expression level of Sus scrofa (ssc)-miR-21-5p in porcine endometrium tissues was significantly increased from day 9 to day 12 of pregnancy. Knockdown of ssc-miR-21-5p inhibited proliferation and migration of endometrial epithelial cells (EECs), and induced their apoptosis. We verified that programmed cell death 4 (PDCD4) was a target gene of ssc-miR-21-5p. Inhibition of PDCD4 rescued the effect of ssc-miR-21-5p repression on EECs. Our results also revealed that knockdown of ssc-miR-21-5p impeded the phosphorylation of AKT (herein referring to AKT1) by targeting PDCD4, which further upregulated the expression of Bax, and downregulated the levels of Bcl2 and Mmp9. Furthermore, loss of function of Mus musculus (mmu)-miR-21-5p in vivo resulted in a decreased number of implanted mouse embryos. Taken together, knockdown of ssc-miR-21-5p hampers endometrial receptivity by modulating the PDCD4/AKT pathway.
Collapse
Affiliation(s)
- Renwu Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xiuling Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Wenchao Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Weisi Lian
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Qiaorui Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Dengying Gao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yueying Wang
- Department of Reproductive Medicine, Jining No.1 People's Hospital, Jining, 272000, China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
- National Engineering Research Center for Livestock, Wuhan, 430000, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430000, China
| |
Collapse
|
12
|
Li Z, Huang X, Liu A, Xu J, Lai J, Guan H, Ma J. Circ_PSD3 promotes the progression of papillary thyroid carcinoma via the miR-637/HEMGN axis. Life Sci 2020; 264:118622. [PMID: 33203523 DOI: 10.1016/j.lfs.2020.118622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
AIMS In the present study, we aimed to uncover the potential functions of circular RNA (circRNA) pleckstrin and Sec7 domain containing 3 (circ_PSD3) in papillary thyroid carcinoma (PTC) development. MAIN METHODS The abundance of circ_PSD3, PSD3 messenger RNA (mRNA), microRNA-637 (miR-637) and hemogen (HEMGN; EDAG-1) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Flow cytometry was employed to measure cell cycle progression and cell apoptosis. Western blot assay was used to examine protein expression. The proliferation ability and motility of PTC cells were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays, respectively. The interaction between miR-637 and circ_PSD3 or HEMGN was tested by dual-luciferase reporter assay. Animal experiments were used to explore the role of circ_PSD3 in PTC progression in vivo. KEY FINDINGS Circ_PSD3 was aberrantly up-regulated in PTC tumor tissues compared with adjacent normal tissues. Circ_PSD3 and HEMGN promoted the cell cycle progression, proliferation and metastasis and impeded the apoptosis of PTC cells. MiR-637 was a direct target of circ_PSD3, and miR-637 directly interacted with HEMGN mRNA in PTC cells. Circ_PSD3 silencing-induced effects in PTC cells were partly attenuated by the addition of anti-miR-637 or HEMGN overexpression plasmid. Circ_PSD3/miR-637/HEMGN regulated the activity of PI3K/Akt signal pathway in PTC cells. Circ_PSD3 silencing inhibited the tumor growth in vivo. SIGNIFICANCE Circ_PSD3 promoted the progression of PTC through regulating miR-637/HEMGN axis and activating PI3K/Akt signaling. Circ_PSD3/miR-637/HEMGN signaling axis might be a potential target for PTC therapy.
Collapse
Affiliation(s)
- Zongyu Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Huang
- Department of General Surgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Aru Liu
- Department of Respiratory Medicine, Xi'an Union Hospital, Xi'an, China
| | - Jinkai Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyue Lai
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Guan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
13
|
Zhang P, Zhao S, Lu X, Shi Z, Liu H, Zhu B. Metformin enhances the sensitivity of colorectal cancer cells to cisplatin through ROS-mediated PI3K/Akt signaling pathway. Gene 2020; 745:144623. [PMID: 32222530 DOI: 10.1016/j.gene.2020.144623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Metformin and cisplatin have been widely studied as antitumor agents. However, the effect of metformin combined with cisplatin has not been investigated in colorectal cancer (CRC) cells. This study was aimed to explore the effect of metformin or/and cisplatin on cell viability, apoptosis, and the related signaling pathways in CRC SW480 and SW620 cells. We found that metformin or cisplatin inhibited cell viability of SW480 and SW620 cells in a concentration- and time-dependent manner. Furthermore, metformin combined with cisplatin obviously inhibited cell viability, decreased colony formation, induced apoptosis, mediated cleavage of caspase-9, caspase-3 and PARP, activated mitochondrial membrane potential, downregulated Mcl-1 and Bcl-2 expression, upregulated Bak and Bax expression, and increased reactive oxygen species (ROS) production, compared to the individual agent in SW480 and SW620 cells, which were attenuated by N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, NAC could recover the downregulation of p-PI3K and p-Akt treated with combination of metformin and cisplatin, which subsequently activated the PI3K/Akt signaling pathway. Taken together, our results demonstrated that metformin enhanced the sensitivity of CRC cells to cisplatin through ROS-mediated PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Pei Zhang
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Surong Zhao
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Xingyue Lu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Zongfen Shi
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China.
| | - Bing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| |
Collapse
|
14
|
Wang RG, Zhang D, Zhao CH, Wang QL, Qu H, He QS. FKBP10 functioned as a cancer-promoting factor mediates cell proliferation, invasion, and migration via regulating PI3K signaling pathway in stomach adenocarcinoma. Kaohsiung J Med Sci 2019; 36:311-317. [PMID: 31868996 DOI: 10.1002/kjm2.12174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/02/2019] [Indexed: 11/08/2022] Open
Abstract
As documented, the expression, biological roles, and prognostic significance of FKBP10 in stomach adenocarcinoma (STAD) have not been investigated till now. This drives us to detect the biological roles and clinical significance of FKBP10 in STAD. The expression level of FKBP10 was measured based on the data obtained from the TCGA, ONCOMINE, and GEPIA databases, and STAD cell lines. Through in vitro experiments, cell behaviors were investigated to evaluate the effects of FKBP10 on STAD. Moreover, the PI3K-AKT signaling pathway was measured. Relying on the data of TCGA, ONCOMINE, and GEPIA databases, and cancer cell lines, FKBP10 was up-regulated in STAD when compared with normals. The patients with low expression of FKBP10 had higher survival rate than those with high FKBP10 expression. After knockdown of FKBP10 in AGS cells, cell vitality, colony formation ability, and the migratory and invasive potential were inhibited. Western blotting analysis exhibited that knockdown of FKBP10 significantly reduced the expression level of p-AKT, and p-PI3K, but it did not influence the total expression level of AKT, and PI3K. FKBP10 might serve as a crucial player in gastric cancer, and targeting FKBP10 might provide clinical utility in gastric cancer in future.
Collapse
Affiliation(s)
- Ruo-Gu Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dan Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chun-Hong Zhao
- Central Lab, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qi-Long Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hui Qu
- Department of Gastrointestinal Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qing-Si He
- Department of Gastrointestinal Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Li Z, Zhou G, Jiang L, Xiang H, Cao Y. Effect of STOX1 on recurrent spontaneous abortion by regulating trophoblast cell proliferation and migration via the PI3K/AKT signaling pathway. J Cell Biochem 2019; 120:8291-8299. [PMID: 30548667 PMCID: PMC6590170 DOI: 10.1002/jcb.28112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
STOX1 is a transcription factor that is implicated in the high prevalence of human gestational diseases. It has been studied in various types of gestational diseases using different molecular and cellular biological technologies. However, the effect and detailed mechanism of storkhead box 1 (STOX1) in recurrent spontaneous abortion (RSA) remain unknown. This study aimed to explore the effect and detailed mechanism of STOX1 in human trophoblast cells. The result showed that downregulation of STOX1 by short hairpin RNA (shRNA) led to a decrease in proliferation and migration in HTR-8/SVneo cells, while it induced the apoptosis of HTR-8/SVneo cells. Moreover, the result showed that trophoblast cells expressed lower levels of pAKT and p85 subunits after treatment with STOX1 shRNA when compared with control. However, overexpression of STOX1 obviously increased the pAKT and p85 protein expressions. Transfection of pcDNA-AKT plasmid increased cell proliferation and migration in HTR-8/SVneo cells while suppressed the apoptosis of HTR-8/SVneo cells. Furthermore, inhibition of the PI3K/Akt pathway by a specific inhibitor promoted cell apoptosis and aggravatedly suppressed cell proliferation and migration of HTR-8/SVneo cells. On the other hand, upregulation of the PI3K/Akt pathway could increase the relative expression level of Bcl-2 and decrease the relative expression levels of Bax and Bim, while inhibition of the PI3K/Akt pathway led to adverse results. Our results demonstrated that inhibition of STOX1 could suppress trophoblast cell proliferation and migration, while promote apoptosis through inhibiting the PI3K/Akt signaling pathway. These findings might provide a new fundamental mechanism for regulating RSA and could be used to prevent and treat RSA in clinic.
Collapse
Affiliation(s)
- Zhifang Li
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina,Anqing Municipal Hospital, Anhui Medical UniversityAnqingChina
| | - Guiju Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina,Department Gynecology, The Second Affiliated Hospital, Anhui Medical UniversityHefeiChina
| | - Longfan Jiang
- Anqing Municipal Hospital, Anhui Medical UniversityAnqingChina
| | - Huifen Xiang
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina
| | - Yunxia Cao
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina
| |
Collapse
|
16
|
Wang H, Yan X, Zhang H, Zhan X. CircRNA circ_0067934 Overexpression Correlates with Poor Prognosis and Promotes Thyroid Carcinoma Progression. Med Sci Monit 2019; 25:1342-1349. [PMID: 30779728 PMCID: PMC6390454 DOI: 10.12659/msm.913463] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNAs are important regulators in human cancers, including thyroid carcinoma. The circ_0067934 RNA is reported to participate in hepatocellular carcinoma, esophageal squamous cell carcinoma, and lung cancer. Whether it regulates thyroid carcinoma remains unclear. The purpose of this study was to research potential mechanisms of circ_0067934 in thyroid tumors to provide potential new diagnostic and treatment targets. MATERIAL AND METHODS The expression level of circ_0067934 in thyroid tumors, adjacent tissues, and cell lines was measured by qRT-PCR. The Kaplan-Meier survival curve analysis was used to explore the relationship between circ_0067934 level and survival time of patients. Circ_0067934 was knocked down to research its functional role in thyroid tumors. Cell proliferation was detected by CCK-8 (cell counting kit-8) assay. Migration and invasion were analyzed by Transwell assay. Western blot was applied to analyze the expression of epithelial-mesenchymal-transition (EMT) and PI3K/AKT related proteins. RESULTS Compared with adjacent tissue, circ_0067934 was highly expressed in thyroid tumors. Circ_0067934 expression level was highly expressed in thyroid tumor cell lines. Patients with high expression of circ_0067934 showed lower survival rates. Knockdown of circ_0067934 inhibited cell proliferation, migration, and invasion and also promoted apoptosis. In addition, circ_0067934 knockdown inhibited EMT and PI3K/AKT signaling pathways. CONCLUSIONS circ_0067934 could improve the development of thyroid carcinoma by promoting EMT and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, Heilongjiang, China (mainland)
| | - Xiaoguang Yan
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, Heilongjiang, China (mainland)
| | - Haijun Zhang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, Heilongjiang, China (mainland)
| | - Xiaorong Zhan
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
17
|
Liu M, Qu Y, Teng X, Xing Y, Li D, Li C, Cai L. PADI4‑mediated epithelial‑mesenchymal transition in lung cancer cells. Mol Med Rep 2019; 19:3087-3094. [PMID: 30816464 PMCID: PMC6423585 DOI: 10.3892/mmr.2019.9968] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a complex disease involving multiple genetic and phenotypic alterations. As a histone modification enzyme, protein-arginine deiminase type-4 (PADI4) and its downstream signaling have been studied in the progression of a variety of types of human cancer, but data on PADI4-mediated posttranslational modification in lung cancer are lacking. The aim of present study was to evaluate the expression of PADI4 and its associated molecular signaling in lung cancer metastasis. The results of the present study indicated that PADI4 was overexpressed in lung cancer cells, while knockdown of PADI4 could lead to attenuation of the lung cancer cell invasion and migration phenotype, which was further verified by determining the epithelial-mesenchymal transition (EMT) marker proteins. Additionally, it was demonstrated that stable knockdown of PADI4 in A549 lung cancer cells resulted in a striking reduction of the EMT-associated Snail1/mothers against decapentaplegic homolog 3/4 transcriptional complex, which was consistent with alterations in migratory and invasive phenotypes of A549 lung cancer cells. Therefore, PADI4-mediated EMT transition is proposed to represent a novel mechanism underlying the epigenetic and phenotypic alterations in lung cancer cells, and the PADI4 associated signaling pathway may be a therapeutic target for treating lung cancer in a clinical setting.
Collapse
Affiliation(s)
- Meiyan Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Yang Qu
- Department of Internal Medicine, The Second Hospital of Heilongjiang Province, Harbin, Heilongjiang 150010, P.R. China
| | - Xue Teng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Ying Xing
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Dandan Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Chunhong Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Li Cai
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
18
|
Jang HJ, Bak Y, Pham TH, Kwon SB, Kim BY, Hong J, Yoon DY. STK899704 inhibits stemness of cancer stem cells and migration via the FAK-MEK-ERK pathway in HT29 cells. BMB Rep 2018. [PMID: 30269740 PMCID: PMC6283024 DOI: 10.5483/bmbrep.2018.51.11.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Colon cancer is one of the most lethal and common malignancies worldwide. STK899704, a novel synthetic agent, has been reported to exhibit anticancer effects towards numerous cancer cells. However, the effect of STK899704 on the biological properties of colon cancer, including cancer cell migration and cancer stem cells (CSCs), remains unknown. Here, we examined the inhibitory effect of STK899704 on cell migration and CSC stemness. In the wound healing assay, STK899704 significantly inhibited the motility of colon cancer cells. Furthermore, STK899704 downregulated the mRNA expression levels of the cell migration mediator focal adhesion kinase (FAK). STK899704 also suppressed mitogen-activated protein kinase kinase and extracellular signal-regulated kinase, which are downstream signaling molecules of FAK. Additionally, STK899704 inhibited stemness gene expression and sphere formation in colon cancer stem cells. These results suggest that STK899704 can be used to treat human colon cancer.
Collapse
Affiliation(s)
- Hui-Ju Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sae-Bom Kwon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Bo-Yeon Kim
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Korea
| | - JinTae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
19
|
Lichota A, Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int J Mol Sci 2018; 19:E3533. [PMID: 30423952 PMCID: PMC6275022 DOI: 10.3390/ijms19113533] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper describes the substances of plant and marine origin that have anticancer properties. The chemical structure of the molecules of these substances, their properties, mechanisms of action, their structure⁻activity relationships, along with their anticancer properties and their potential as chemotherapeutic drugs are discussed in this paper. This paper presents natural substances from plants, animals, and their aquatic environments. These substances include the vinca alkaloids, mistletoe plant extracts, podophyllotoxin derivatives, taxanes, camptothecin, combretastatin, and others including geniposide, colchicine, artesunate, homoharringtonine, salvicine, ellipticine, roscovitine, maytanasin, tapsigargin, and bruceantin. Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from the marine plants and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates (e.g., sponges, tunicates, and soft corals) as well as certain other substances that have been tested on cells and experimental animals and used in human chemotherapy.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
20
|
Yan J, Song B, Hu W, Meng Y, Niu F, Han X, Ge Y, Li N. Antitumor Effect of GO-PEG-DOX Complex on EMT-6 Mouse Breast Cancer Cells. Cancer Biother Radiopharm 2018; 33:125-130. [PMID: 29763376 DOI: 10.1089/cbr.2017.2348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Doxorubicin (DOX) can be used to treat malignant tumors, but with multiple adverse effects. Graphene oxide-polyethylene glycol (GO-PEG) is a novel nanoscale carrier material and can elevate solubility and biocompatibility of drugs. This study prepared a GO-PEG-DOX complex, whose toxicity and antitumor effects were evaluated on mouse EMT-6 breast cancer cells. MATERIALS AND METHODS GO-PEG-DOX complex was prepared for calculating the drug carrier rate of DOX on GO-PEG by MV approach. EMT-6 cells were treated with 40 μg/mL GO-PEG, 1 μg/mL DOX, or 40 μg/mL +1 μg/mL GO-PEG-DOX for 72 h of incubation. Cells without treatment were considered the control group. Cell survival rate and apoptotic rate were tested at different time points. RESULTS GO-PEG and GO-PEG-DOX complex were successfully prepared with satisfactory solubility. After 72 h of incubation, EMT-6 cells after GO-PEG-DOX treatment had significantly higher survival rate than GO-PEG group (p < 0.05). All three treatment groups had significantly elevated apoptotic rates than control group (p < 0.05). GO-PEG-DOX group had much more apoptosis (p < 0.05 compared with DOX group). Moreover, with elongated treatment time, all groups showed decreased survival rate (p < 0.05). CONCLUSION GO-PEG did not reduce the cytotoxicity of DOX on EMT-6 cells. GO-PEG-DOX complex can increase the water solubility and targeting sensitivity of DOX, with facilitating effects on DOX-induced tumor cell apoptosis.
Collapse
Affiliation(s)
- Jinyin Yan
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Bo Song
- 2 Breast Surgery Department, Shandong Tengzhou Maternity and Children Care Hospital , Tengzhou, China
| | - Wanning Hu
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Ying Meng
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Fengling Niu
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Xiaochen Han
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Yuhui Ge
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Ning Li
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| |
Collapse
|
21
|
Chen Z, He J, Xing X, Li P, Zhang W, Tong Z, Jing X, Li L, Liu D, Wu Q, Ju H. Mn12Ac inhibits the migration, invasion and epithelial-mesenchymal transition of lung cancer cells by downregulating the Wnt/β-catenin and PI3K/AKT signaling pathways. Oncol Lett 2018; 16:3943-3948. [PMID: 30128012 PMCID: PMC6096228 DOI: 10.3892/ol.2018.9136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/13/2018] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of global cancer-associated mortality, therefore it is important to reveal the molecular mechanisms of lung cancer progression and to develop novel therapeutic targets. The results of the present study identified that manganese-12 acetate (Mn12Ac) was able to significantly inhibit the migration and invasion of A549 cells. Western blotting demonstrated that treatment with Mn12Ac was able to upregulate E-cadherin, and downregulate N-cadherin and vimentin. It was also identified by a quantitative polymerase chain reaction analysis that Mn12Ac was able to reduce the mRNA expression levels of EMT-associated transcription factors Snail, Slug, Twist-related protein 1 and zinc finger E-box-binding homeobox 1. It was also demonstrated that Mn12Ac was able to reduce the expression levels of Wnt and β-catenin proteins, and suppress the phosphorylation of phosphoinositide 3-kinase (PI3K) and AKT in A549 cells. Notably, it was revealed that Mn12Ac was able to decrease the mRNA and protein expression levels of programmed death ligand-1. Taken together, the results suggested that Mn12Ac is able to inhibit cell migration, invasion and EMT in lung cancer cells by regulating the Wnt/β-catenin and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Zihao Chen
- Gruaduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jiangbo He
- School of Medicine, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Xiqian Xing
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Ping Li
- School of Medicine, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Wei Zhang
- Department of Medicine, The People's Hospital of Economic and Technological Development Zone, Kunming, Yunnan 650000, P.R. China
| | - Zhuxiu Tong
- Department of Medicine, The People's Hospital of Economic and Technological Development Zone, Kunming, Yunnan 650000, P.R. China
| | - Xiaojie Jing
- Department of Medicine, The People's Hospital of Economic and Technological Development Zone, Kunming, Yunnan 650000, P.R. China
| | - Licheng Li
- School of Medicine, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Dian Liu
- School of Medicine, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Hongping Ju
- School of Medicine, Kunming University, Kunming, Yunnan 650214, P.R. China
- Respiratory System Disease Prevention and Control of Public Service Platform of Science and Technology in Yunnan Province, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
22
|
Zhang P, Ma J, Gao J, Liu F, Sun X, Fang F, Zhao S, Liu H. Downregulation of monocarboxylate transporter 1 inhibits the invasion and migration through suppression of the PI3K/Akt signaling pathway in human nasopharyngeal carcinoma cells. J Bioenerg Biomembr 2018; 50:271-281. [PMID: 29882205 DOI: 10.1007/s10863-018-9763-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Monocarboxylate transporter 1 (MCT1) has been reported to be correlated wtih decreased survival and advanced stage of progression in a series of human tumor cells and primary cancers. Specifically, MCT1 has been documented to be involved in tumor progression, including invasion and migration. Here, we investigated the mechanism and effect of regulation of MCT1 on invasion and migration of nasopharyngeal carcinoma (NPC) cells. In the study, we firstly demonstrated that the expression of MCT1 in CNE2Z cells was obviously higher than that in HNE1 cells. Downregulation of MCT1 inhibited the invasion and migration in CNE2Z cells, upregulated the expression of E-cadherin, TIMP (tissue inhibitor of metalloproteinase)-2 and TIMP-1, and suppressed the expression of matrix metalloproteinases (MMP)-9 and MMP-2. Correspondingly, upregulation of MCT1 enhanced the invasive and migratory potential in HNE1 cells, increased the expression of MMP-9 and MMP-2, and downregulated the expression of E-cadherin, TIMP-2 and TIMP-1. The mechanistic study demonstrated that the effect of MCT1 might be correlated with PI3K/Akt signaling pathway. LY294002, a PI3K inhibitor, increased the inhibition of invasion and migration mediated by downregulation of MCT1 in CNE2Z cells. These findings collectively suggested that MCT1 might act as a new regulator to improve invasion and migration of NPC cells and be correlated with activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Pei Zhang
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, 233030, Anhui, People's Republic of China
| | - Jie Ma
- Department of Orthopedics, the First Affiliated Hospital f Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Jiao Gao
- Department of Orthopedics, the First Affiliated Hospital f Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Fang Liu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, 233030, Anhui, People's Republic of China
| | - Xiaojin Sun
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, 233030, Anhui, People's Republic of China
| | - Fang Fang
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, 233030, Anhui, People's Republic of China
| | - Surong Zhao
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, 233030, Anhui, People's Republic of China.
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, 233030, Anhui, People's Republic of China.
| |
Collapse
|
23
|
Yuan Q, Liu Y, Fan Y, Liu Z, Wang X, Jia M, Geng Z, Zhang J, Lu X. LncRNA HOTTIP promotes papillary thyroid carcinoma cell proliferation, invasion and migration by regulating miR-637. Int J Biochem Cell Biol 2018; 98:1-9. [DOI: 10.1016/j.biocel.2018.02.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/08/2022]
|
24
|
Yue H, Zhu X, Li S, Wang F, Wang X, Guan Z, Zhu Z, Niu B, Zhang T, Guo J, Wang J. Relationship Between INPP5E Gene Expression and Embryonic Neural Development in a Mouse Model of Neural Tube Defect. Med Sci Monit 2018; 24:2053-2059. [PMID: 29626185 PMCID: PMC5903545 DOI: 10.12659/msm.906095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The INPP5E gene encodes for the inositol polyphosphate-5-phosphatase (INPP5E) 72 kDa protein that regulates the phosphoinositide signaling pathway and other cellular activities, but the functional role of this gene in embryonic neurodevelopment and neural tube defect (NTD) remains unclear. The aim of this study was to use a mouse model of NTD to investigate the expression levels of the INPP5E gene during neural development and the occurrence of NTD. Material/Methods In an established NTD mouse model, stereoscopy was used to look for morphological defects. Transcription and expression levels of the INPP5E gene in neural tissues were detected using real-time fluorescence quantitative polymerase chain reaction (PCR) and Western blotting in the NTD mouse embryos and compared with control mouse embryos. Results The expression levels of the INPP5E gene decreased as embryonic development progressed in the neural tissue of control mice embryos, but showed no obvious trend in the neural tissues of the NTD mouse embryos. The expression levels of the INPP5E gene in NTD mouse embryos were significantly lower compared with control embryos, at the time of neural tube closure (gestational day 11.5). Conclusions The INPP5E gene regulates the process of embryonic neural development. Abnormal levels of expression of the INPP5E gene may contribute to NTDs. Increased knowledge of the expression pattern of the INPP5E gene may lead to an advanced understanding of the molecular mechanism of embryonic neurodevelopment and identify more specific directions to explore potential treatments for NTDs associated with abnormalities in INPP5E gene expression levels.
Collapse
Affiliation(s)
- Huixuan Yue
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Xiting Zhu
- Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Fang Wang
- Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Bo Niu
- Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Jin Guo
- Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| |
Collapse
|
25
|
Ju H, Li Y, Xing X, Miao X, Feng Y, Ren Y, Qin J, Liu D, Chen Z, Yang Z. Manganese-12 acetate suppresses the migration, invasion, and epithelial-mesenchymal transition by inhibiting Wnt/β-catenin and PI3K/AKT signaling pathways in breast cancer cells. Thorac Cancer 2018; 9:353-359. [PMID: 29316252 PMCID: PMC5832475 DOI: 10.1111/1759-7714.12584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Breast cancer is the leading cause of cancer-related death in the world, and it is of great value to reveal the molecular mechanisms of breast cancer progression and develop new therapeutic targets. METHODS Transwell assay is used to analyze the migration and invasion of breast cancer cells. Real-time PCR and western blotting assay are applied to detect the expression levels of epithelial-mesenchymal transition markers and the key members of Wnt/β-catenin and PI3K/AKT signaling pathways. RESULTS Manganese-12 acetate (Mn12Ac) significantly inhibited the migration and invasion of MCF7 and MDA-MB-231 breast cancer cells. Western blotting assay further showed that Mn12Ac significantly upregulated E-cadherin, and downregulated N-cadherin and vimentin. We further found that Mn12Ac reduced the mRNA expressions of epithelial-mesenchymal transition-associated transcription factors snail, slug, twist1, and ZEB1 using real-time PCR assay. Importantly, we further found that Mn12Ac significantly reduced the Wnt1 and β-catenin protein expressions, and suppressed the phosphorylation of PI3K and AKT in MCF7 and MDA-MB-231 breast cancer cells. Very interestingly, we also showed that Mn12Ac decreased the mRNA and protein expressions of programmed cell death ligand 1. CONCLUSION Taken together, our results suggested that Mn12Ac inhibited the migration, invasion, and epithelial-mesenchymal transition by regulating Wnt/β-catenin and PI3K/AKT signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Hongping Ju
- School of MedicineKunming UniversityKunmingChina
| | - Yongxia Li
- The Department of Respiratory Medicine, Second WardThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xiqian Xing
- The First Department of Respiratory MedicineYan'an Hospital Affiliated to Kunming Medical UniversityKunmingChina
| | - Xisong Miao
- School of MedicineKunming UniversityKunmingChina
| | - Yunping Feng
- School of MedicineKunming UniversityKunmingChina
| | - Yunhui Ren
- School of MedicineKunming UniversityKunmingChina
| | - Jing Qin
- School of MedicineKunming UniversityKunmingChina
| | - Dian Liu
- School of MedicineKunming UniversityKunmingChina
| | - Zihao Chen
- The Graduate SchoolHebei Medical UniversityShijiazhuangChina
| | - Zhaoyu Yang
- School of MedicineKunming UniversityKunmingChina
| |
Collapse
|
26
|
Donato S, Santos R, Simões H, Leite V. Novel therapies against aggressive differentiated thyroid carcinomas. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2018. [DOI: 10.2217/ije-2017-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The incidence of thyroid cancer (TC) is increasing. Although the majority of these cancers have a good prognosis, 10% of these will develop local recurrence and/or distant metastases. Conventional cytotoxic chemotherapy has been largely replaced by molecular-target therapies, but it can still have a role. Two tyrosine kinase inhibitors have been approved for the treatment of advanced differentiated TC. They significantly improve progression-free survival, but at the cost of frequent and potentially serious adverse effects. At the moment, there are multiple clinical trials with other tyrosine kinase inhibitors and other drugs. We present a review of the current standard of care and what is up to come in the treatment of advanced TC.
Collapse
Affiliation(s)
- Sara Donato
- Endocrinology Department, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon, Portugal
| | - Rita Santos
- Endocrinology Department, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon, Portugal
- NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Helder Simões
- Endocrinology Department, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon, Portugal
- NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Valeriano Leite
- Endocrinology Department, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon, Portugal
- NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
27
|
Perán M, López-Ruiz E, García MÁ, Nadaraia-Hoke S, Brandt R, Marchal JA, Kenyon J. A formulation of pancreatic pro-enzymes provides potent anti-tumour efficacy: a pilot study focused on pancreatic and ovarian cancer. Sci Rep 2017; 7:13998. [PMID: 29070896 PMCID: PMC5656641 DOI: 10.1038/s41598-017-14571-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022] Open
Abstract
Proteolytic enzymes have shown efficacy in cancer therapy. We present a combination of the two pro-enzymes Trypsinogen and Chymotrypsinogen A with potent in vitro and in vivo anti-tumour efficacy. A synergetic anti-tumour effect for Trypsinogen and Chymotrypsinogen A was determined at a ratio 1:6 (named PRP) using 24 human cancer cell lines. The antiangiogenic effect of PRP was analysed by matrigel-based tube formation and by fibrous capsule formation assays. Furthermore, cell invasion and wound healing assays together with qRT-PCR determination of epithelial-to-mesenchymal transition (EMT) markers were performed on human cancer cells treated with PRP. Additionally, in vivo pharmacokinetic studies were implemented and the PRP's anti-tumour efficacy was explored against orthotopic pancreatic and ovarian cancer tumours. PRP formulation was proven to inhibit in vitro angiogenesis, tumour growth, cancer cell migration and invasiveness; and to be an effective and well tolerated in vivo anti-tumour treatment. Finally, the clinical efficacy of a suppository formulation containing both pancreatic pro-enzymes in the context of a UK Pharmaceuticals Special Scheme was evaluated in advanced cancer patients. Consequently, PRP could have relevant oncological clinical applications for the treatment of advanced or metastatic pancreatic adenocarcinoma and advanced epithelial ovarian cancer.
Collapse
Affiliation(s)
- Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.
| | - Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - María Ángel García
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Oncology, University Hospital Virgen de las Nieves, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | | | - Ralf Brandt
- vivoPharm LLC, 1214 Research Boulevard 17036, Hummelstown PA, United States
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Julian Kenyon
- The Dove Clinic for Integrated Medicine, Twyford, SO21 1RG, UK.
| |
Collapse
|
28
|
LncRNA MEG3 has anti-activity effects of cervical cancer. Biomed Pharmacother 2017; 94:636-643. [DOI: 10.1016/j.biopha.2017.07.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 01/19/2023] Open
|
29
|
Liu D, Zhu Y, Pang J, Weng X, Feng X, Guo Y. Knockdown of long non-coding RNA MALAT1 inhibits growth and motility of human hepatoma cells via modulation of miR-195. J Cell Biochem 2017; 119:1368-1380. [PMID: 28722813 DOI: 10.1002/jcb.26297] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The metastasis-associated lung adenocarcinoma transcription 1 (Malat1) is a long non-coding RNA (lncRNA), exerts oncogenic role in multiple cancers, including hepatocellular carcinoma (HCC). This study was aimed to investigate its posttranscriptional regulation in HCC cells. RT-PCR was performed to monitor the expression levels of Malat1 in normal liver and HCC cell lines. The expression of Malat1, microRNA (miR)-195, and epidermal growth factor receptor (EGFR) in HepG2 and MHCC97 cells was respectively or synchronously altered by transfection. Then the changes in cell viability, apoptotic cell rate, cell cycle distribution, migration, and invasion were respectively assessed. As a result, we found that Malat1 was highly expressed in HCC cell lines when compared to normal liver cells. Malat1 silence suppressed HCC cells viability, migration and invasion, induced apoptosis, and arrested more cells in G0/G1 phase. Malat1 acted as a circular endogenous RNA (ceRNA) for miR-195. Malat1 silence could not suppress HCC cell growth and motility when miR-195 was knocked down. EGFR was a direct target of miR-195. miR-195 overexpression could not suppress HCC cell growth and motility when the 3'UTR site of EGFR was overexpressed. Furthermore, Malat1 silence blocked the activation of PI3K/AKT and JAK/STAT pathways, while EGFR overexpression activated them. Our study demonstrates Malat1-miR-195-EGFR axis plays a critical role in HCC cells which provided a better understanding of Malat1 in HCC.
Collapse
Affiliation(s)
- Dingli Liu
- Department of Infectious Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yun Zhu
- Department of Infectious Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Jinke Pang
- Department of Infectious Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xie Weng
- Department of Infectious Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaorong Feng
- Department of Infectious Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yabing Guo
- Department of Infectious Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Sherbet G. Suppression of angiogenesis and tumour progression by combretastatin and derivatives. Cancer Lett 2017; 403:289-295. [DOI: 10.1016/j.canlet.2017.06.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/10/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
|
31
|
Hong Y, Shi J, Ge Z, Wu H. Associations between mutations of the cell cycle checkpoint kinase 2 gene and gastric carcinogenesis. Mol Med Rep 2017; 16:4287-4292. [PMID: 29067458 DOI: 10.3892/mmr.2017.7080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/18/2017] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is the most common malignant tumor of the digestive system. The etiology of gastric cancer is complex, and susceptibility at the genetic level remains to be fully elucidated in genetic investigations. In the present study, mutations of the cell cycle checkpoint kinase 2 (CHEK2) gene and its association with gastric cancer were examined. Reverse transcription‑quantitative polymerase chain reaction technology was used to detect the expression of CHEK2 and it was found that the expression of CHEK2 was low in gastric cancer. Using sequencing analysis, it was found that the low expression level of CHEK2 was associated with expression of its mutation. The present study also established a CHEK2‑overexpressing mutant and confirmed that CHEK2 promoted gastric cancer cell proliferation. Overexpression of the CHEK2 mutation was confirmed to promote cancer cell migration and invasion. Furthermore, western blot analysis results revealed that overexpression of the CHEK2 mutation downregulated E‑cadherin and upregulated vimentin expression, indicating the mechanism underlying the altered biological behavior. These results suggested that there was a correlation between mutation of the CHEK2 gene and gastric cancer, and provided an experimental basis for antitumor drug investigation and development according to its mutation target.
Collapse
Affiliation(s)
- Yan Hong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jun Shi
- Department of General Surgery, Yixing People's Hospital, Yixing, Jiangsu 214200, P.R. China
| | - Zhijun Ge
- Department of General Surgery, Yixing People's Hospital, Yixing, Jiangsu 214200, P.R. China
| | - Haorong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
32
|
Chen X, Li B, Luo R, Cai S, Zhang C, Cao X. Analysis of the function of microRNA-375 in humans using bioinformatics. Biomed Rep 2017; 6:561-566. [PMID: 28515914 DOI: 10.3892/br.2017.889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/14/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-375 (miR-375) is expressed at low levels in many types of solid tumor, particularly in gastrointestinal tumors. It is considered to be important in the development of cancer and certain diseases. Thus, more detailed knowledge is required on the particular functions of miR-375. miRs function by regulating target genes. Therefore, in the current study, miRWalk (which includes the data from 10 prediction software programs) was used to predict the target genes of miR-375. The genes, which were co-predicted using five different software programs were further analyzed using Database for Annotation, Visualization and Integrated Discovery online software [including gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis]. Subsequently, the online tool, Search Tool for the Retrieval of Interacting Genes, was used to analyze the protein-protein interaction and construct modules using Cytoscape. The result demonstrated 6,574 predicted genes, 1,325 of which were co-predicted. The GO analysis result indicated that, in biological processes, the co-predicted genes were significantly enriched in the regulation of nervous system development and cell differentiation, and the highest enrichment of molecular function was ion binding. In KEGG analysis, the genes were enriched in the Hippo signaling pathway, glutamatergic synapse, circadian entrainment and the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. The top 10 hub proteins were mechanistic target of rapamycin, PH domain and leucine rich repeat protein phosphatase 1, ubiquitously transcribed tetratricopeptide repeat containing, Y-linked, histone deacetylase 2, F-box and leucine rich repeat protein 19, KIT proto-oncogene receptor tyrosine kinase, angiotensinogen, Janus kinase 2, fibroblast growth factor 2 and RNA polymerase II subunit A. These proteins predominantly regulate the development and progression of cancer, hypertension, essential thrombocythemia and inflammation. The genes in the top seven modules selected were identified to be primarily enriched in chemokines, extracellular matrix-receptor interaction, focal adhesion, the PI3K-Akt signaling pathway, amoebiasis and protein processing signaling pathway. Thus, the target genes and hub proteins that were predicted in the current study were identified to be important in regulating the development and progression of cancer and certain diseases. Furthermore, they present potential novel biomarkers for tumor diagnosis and candidate targets for treatment, and indicate that further research is required to establish the functions of miR-375.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Baoxia Li
- Department of Oncology, South China State Laboratory, Cancer Center of Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Rongcheng Luo
- Department of Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sina Cai
- Department of Oncology, The Hospital of Third Affiliated Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Cao Zhang
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Xiaolong Cao
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, Guangdong 511400, P.R. China
| |
Collapse
|