1
|
Elkady N, Allam DM. The Role of Galectin3, Tubulinβ, and Maspin in Promoting Tumor Budding in Colorectal Carcinoma and Their Clinical Implications. Appl Immunohistochem Mol Morphol 2024; 32:143-150. [PMID: 38251657 DOI: 10.1097/pai.0000000000001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide. Despite the advances in surgical and therapeutic management, tumor metastases and poor prognosis are still major problems. Tumor budding is a relevant prognostic factor in CRC, and it can predict tumor metastasis. Galectin3 is responsible for the development and progression of many cancers through the regulation of cell-cell/cell-matrix interactions and tumor cell invasion. Tubulin is a microtubule protein, and maspin is a serine protease inhibitor; both induce tumor cell invasion through the stimulation of epithelial-mesenchymal transition. This study aims to evaluate the relationship between the expression of galecin3, tubulinβ, and maspin in CRC and clinicopathological features, including tumor budding, their prognostic roles, and clinical implications using immunohistochemistry. Galectin3, tubulinβ, and maspin were detected in tumor cells in 95%, 65%, and 87.5% of cases and in stromal cells in 28.8%, 40%, and 0% of cases. High expression of galectin3 and tubulinβ expression either in tumor cells or stroma was significantly associated with aggressive tumor features such as lymph node metastasis, lymphovascular invasion, tumor budding, and advanced tumor stage. The nucleocytoplasmic expression of maspin in tumor cells showed a significant association with deeper tumor invasion, lymph node metastasis, tumor budding, and advanced tumor stage. Significant associations were found between high galectin3 tumor cell expression and nucleocytoplasmic maspin and shorter survival. High expression of galectin3, tubulinβ, and nucleocytoplasmic maspin were significantly associated with aggressive tumor features such as tumor invasion, metastasis, high tumor budding, and short survival in CRC. They could be used as biomarkers for tumor budding and tumor aggressiveness in CRC and may be considered for future target therapy.
Collapse
Affiliation(s)
- Noha Elkady
- Pathology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | | |
Collapse
|
2
|
Duly AMP, Kao FCL, Teo WS, Kavallaris M. βIII-Tubulin Gene Regulation in Health and Disease. Front Cell Dev Biol 2022; 10:851542. [PMID: 35573698 PMCID: PMC9096907 DOI: 10.3389/fcell.2022.851542] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubule proteins form a dynamic component of the cytoskeleton, and play key roles in cellular processes, such as vesicular transport, cell motility and mitosis. Expression of microtubule proteins are often dysregulated in cancer. In particular, the microtubule protein βIII-tubulin, encoded by the TUBB3 gene, is aberrantly expressed in a range of epithelial tumours and is associated with drug resistance and aggressive disease. In normal cells, TUBB3 expression is tightly restricted, and is found almost exclusively in neuronal and testicular tissues. Understanding the mechanisms that control TUBB3 expression, both in cancer, mature and developing tissues will help to unravel the basic biology of the protein, its role in cancer, and may ultimately lead to the development of new therapeutic approaches to target this protein. This review is devoted to the transcriptional and posttranscriptional regulation of TUBB3 in normal and cancerous tissue.
Collapse
Affiliation(s)
- Alastair M. P. Duly
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
| | - Felicity C. L. Kao
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
- School of Women and Children’s Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wee Siang Teo
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
- School of Women and Children’s Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
βIII-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochim Biophys Acta Rev Cancer 2021; 1876:188607. [PMID: 34364992 DOI: 10.1016/j.bbcan.2021.188607] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022]
Abstract
Class III β-tubulin (βIII-tubulin) is frequently overexpressed in human tumors and is associated with resistance to microtubule-targeting agents, tumor aggressiveness, and poor patient outcome. Understanding the mechanisms regulating βIII-tubulin expression and the varied functions βIII-tubulin may have in different cancers is vital to assess the prognostic value of this protein and to develop strategies to enhance therapeutic benefits in βIII-tubulin overexpressing tumors. Here we gather all the available evidence regarding the clinical implications of βIII-tubulin overexpression in cancer, describe factors that regulate βIII-tubulin expression, and discuss current understanding of the mechanisms underlying βIII-tubulin-mediated resistance to microtubule-targeting agents and tumor aggressiveness. Finally, we provide an overview of emerging therapeutic strategies to target tumors that overexpress βIII-tubulin.
Collapse
|
4
|
Expression of Class III Beta-Tubulin Is Associated with Invasive Potential and Poor Prognosis in Thyroid Carcinoma. J Clin Med 2020; 9:jcm9123830. [PMID: 33256003 PMCID: PMC7760790 DOI: 10.3390/jcm9123830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Although American Thyroid Association guidelines offer a risk stratification scheme for thyroid cancer patients, there is a continuous need for more sophisticated biomarkers that can predict disease progression. In this study, we aim to evaluate the prognostic value of class III beta-tubulin (TUBB3) and uncover the relationship between TUBB3 and invasive potential in thyroid carcinoma. Immunohistochemistry (IHC) for TUBB3 and E-cadherin was performed on a total of 254 cases of thyroid cancer specimens. Tumor budding at the invasive margin was evaluated. In vitro functional studies were also performed; the protein and mRNA levels of TUBB3 were compared among the five cell types at baseline, with transwell invasion and after blocking of TUBB3 by shRNA. IHC revealed that the levels of TUBB3 were higher in conventional papillary carcinomas (cPTCs) and anaplastic thyroid carcinomas (ATCs). In univariate analysis, high tumor budding and TUBB3 expression were associated with inferior progression-free survival in cPTC. The results of a Western blot and RT-PCR agreed with the IHC finding. The results were further validated through data from The Cancer Genome Atlas database. Our results suggest that high expression of TUBB3 in thyroid carcinoma could predict invasive potential and possibly be linked with epithelial–mesenchymal transition.
Collapse
|
5
|
Influence of paclitaxel therapy on expression of ßIII-Tubulin and Carbonic anhydrase IX proteins in chemically-induced rat mammary tumors. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00496-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Kamal MA, Al-Zahrani MH, Khan SH, Khan MH, Al-Subhi HA, Kuerban A, Aslam M, Al-Abbasi FA, Anwar F. Tubulin Proteins in Cancer Resistance: A Review. Curr Drug Metab 2020; 21:178-185. [DOI: 10.2174/1389200221666200226123638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Cancer cells are altered with cell cycle genes or they are mutated, leading to a high rate of proliferation
compared to normal cells. Alteration in these genes leads to mitosis dysregulation and becomes the basis of tumor
progression and resistance to many drugs. The drugs which act on the cell cycle fail to arrest the process, making
cancer cell non-responsive to apoptosis or cell death. Vinca alkaloids and taxanes fall in this category and are
referred to as antimitotic agents. Microtubule proteins play an important role in mitosis during cell division as a
target site for vinca alkaloids and taxanes. These proteins are dynamic in nature and are composed of α-β-tubulin
heterodimers. β-tubulin specially βΙΙΙ isotype is generally altered in expression within cancerous cells. Initially,
these drugs were very effective in the treatment of cancer but failed to show their desired action after initial
chemotherapy. The present review highlights some of the important targets and their mechanism of resistance
offered by cancer cells with new promising drugs from natural sources that can lead to the development of a new
approach to chemotherapy.
Collapse
Affiliation(s)
- Mohammad Amjad Kamal
- Metabolomics and Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Hassan Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hasan Khan
- Department of Orthodontics, and Dentofacial Orthopaedics, TMU Dental College, Moradabad, Uttar Pradesh, India
| | - Mateen Hasan Khan
- Department of Pharmacology, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh, India
| | - Hani Awad Al-Subhi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abudukadeer Kuerban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Aslam
- Department of Statistics, Faculy of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Ahmed Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Luo C, Yao D, Lim TK, Lin Q, Liu Y. Identification of the Altered Proteins Related to Colon Carcinogenesis by iTRAQ-based Quantitative Proteomic Analysis. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666181129111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The molecular mechanisms or valuable biomarkers for early diagnosis of colorectal cancer (CRC) are not fully elucidated yet.Objective:To understand the proteomic changes at the global level in the carcinogenesis of CRC, differentially expressed proteins between normal intestinal epithelial cells CCD841 and colorectal cancer cells HCT116 were identified.Method:The isobaric tags for relative and absolute quantitation (iTRAQ) coupled with 2D LC-MS/MS proteomic approach were performed for screening the altered proteins between cells CCD841 and HCT116.Results:A total of 1947 proteins were identified after filtering and using a 1% false discovery rate. Based on a final cutoff (> 3.16 and < 0.32), 229 proteins were found to be significantly altered, among which 95 (41%) were up-regulated while 134 (59%) were down-regulated. Gene Ontology analysis revealed that the differentially expressed proteins were mainly cell part proteins involved in cellular process and binding in terms of subcellular distribution, biological process, and molecular function. KEGG analysis indicated that the differentially expressed proteins were significantly involved in the process of focal adhesion, pathogenic Escherichia coli infection, leukocyte transendothelial migration, bacterial invasion of epithelial cells, regulation of actin cytoskeleton, DNA replication and so on.Conclusion:Collectively, our data identified differentially expressed proteins in colon cancer carcinogenesis, which could provide the clues on unraveling the molecular mechanism of CRC.
Collapse
Affiliation(s)
- Chunhua Luo
- The Department of Pathology, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yingfu Liu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
8
|
Amawi H, Hussein NA, Ashby CR, Alnafisah R, Sanglard LM, Manivannan E, Karthikeyan C, Trivedi P, Eisenmann KM, Robey RW, Tiwari AK. Bax/Tubulin/Epithelial-Mesenchymal Pathways Determine the Efficacy of Silybin Analog HM015k in Colorectal Cancer Cell Growth and Metastasis. Front Pharmacol 2018; 9:520. [PMID: 29875662 PMCID: PMC5974752 DOI: 10.3389/fphar.2018.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
The inhibition of apoptosis, disruption of cellular microtubule dynamics, and over-activation of the epithelial mesenchymal transition (EMT), are involved in the progression, metastasis, and resistance of colorectal cancer (CRC) to chemotherapy. Therefore, the design of a molecule that can target these pathways could be an effective strategy to reverse CRC progression and metastasis. In this study, twelve novel silybin derivatives, HM015a-HM015k (15a−15k) and compound 17, were screened for cytotoxicity in CRC cell lines. Compounds HM015j and HM015k (15k and 15j) significantly decreased cell proliferation, inhibited colony formation, and produced cell cycle arrest in CRC cells. Furthermore, 15k significantly induced the formation of reactive oxygen species and apoptosis. It induced the cleavage of the intrinsic apoptotic protein (Bax p21) to its more efficacious fragment, p18. Compound 15k also inhibited tubulin expression and disrupted its structure. Compound 15k significantly decreased metastatic LOVO cell migration and invasion. Furthermore, 15k reversed mesenchymal morphology in HCT116 and LOVO cells. Additionally, 15k significantly inhibited the expression of the mesenchymal marker N-cadherin and upregulated the expression of the epithelial marker, E-cadherin. Compound 15k inhibited the expression of key proteins known to induce EMT (i.e., DVL3, β-catenin, c-Myc) and upregulated the anti-metastatic protein, cyclin B1. Overall, in vitro, 15k significantly inhibited CRC progression and metastasis by inhibiting apoptosis, tubulin activity and the EMT pathways. Overall, these data suggest that compound 15k should be tested in vivo in a CRC animal model for further development.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY, United States
| | - Rawan Alnafisah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Leticia M Sanglard
- Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | | | | | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India
| | - Kathryn M Eisenmann
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Robert W Robey
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
9
|
Differences of protein expression profiles, KRAS and BRAF mutation, and prognosis in right-sided colon, left-sided colon and rectal cancer. Sci Rep 2017; 7:7882. [PMID: 28801584 PMCID: PMC5554205 DOI: 10.1038/s41598-017-08413-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
To compare protein expression levels, gene mutation and survival among Right-Sided Colon Cancer (RSCC), Left-Sided Colon Cancer (LSCC) and rectal cancer patients, 57 cases of RSCC, 87 LSCC and 145 rectal cancer patients were included retrospectively. Our results demonstrated significant differences existed among RSCC, LSCC and rectal cancer regarding tumor diameter, differentiation, invasion depth and TNM stage. No significant difference was identified in expression levels of MLH1, MSH2, MSH6, PMS2, β-Tubulin III, P53, Ki67 and TOPIIα, and gene mutation of KRAS and BRAF among three groups. Progression Free Survival (PFS) of RSCC was significantly lower than that of LRCC and rectal cancer. In univariate analyses, RSCC, preoperative chemoradiotherapy, poor differentiation, advanced TNM stage, elevated serum CEA and CA19-9 level, tumor deposit, perineural and vascular invasion were found to be predictive factors of shorter PFS. In multivariate analyses, only differentiation and TNM stages were found to be independent predictors of PFS. In conclusion, compared with LSCC and rectal cancer, RSCC has larger tumor size, poor differentiation, advanced TNM stage and shorter survival. The shorter survival in RSCC might be attributed to the advanced tumor stage caused by its inherent position feature of proximal colon rather than genetic difference.
Collapse
|
10
|
Parker AL, Teo WS, McCarroll JA, Kavallaris M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci 2017; 18:ijms18071434. [PMID: 28677634 PMCID: PMC5535925 DOI: 10.3390/ijms18071434] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Tubulin proteins, as components of the microtubule cytoskeleton perform critical cellular functions throughout all phases of the cell cycle. Altered tubulin isotype composition of microtubules is emerging as a feature of aggressive and treatment refractory cancers. Emerging evidence highlighting a role for tubulin isotypes in differentially influencing microtubule behaviour and broader functional networks within cells is illuminating a complex role for tubulin isotypes regulating cancer biology and chemotherapy resistance. This review focuses on the role of different tubulin isotypes in microtubule dynamics as well as in oncogenic changes that provide a survival or proliferative advantage to cancer cells within the tumour microenvironment and during metastatic processes. Consideration of the role of tubulin isotypes beyond their structural function will be essential to improving the current clinical use of tubulin-targeted chemotherapy agents and informing the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Wee Siang Teo
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Joshua A McCarroll
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Maria Kavallaris
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|