1
|
Barbieri RA, Kalva-Filho CA, Faria MH, Silveira-Ciola AP, Torriani-Pasin C, Simieli L, Barbieri FA. Parkinson's Critical Heart Rate Test: Applying the Critical Power Model for People with Parkinson's Disease. J Hum Kinet 2024; 93:81-92. [PMID: 39132420 PMCID: PMC11307192 DOI: 10.5114/jhk/186562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/27/2024] [Indexed: 08/13/2024] Open
Abstract
Aerobic exercise with the correct intensity can attenuate motor and non-motor symptoms of Parkinson's disease (PD) and improve the quality of life. However, a specific, validated, non-invasive, and outside the laboratory protocol that assesses physiological variables to prescribe optimal aerobic exercise intensity for people with PD is nonexistent. Therefore, this study aimed to propose a protocol, the Parkinson's critical heart rate test (Parkinson-CHR test), to determine the critical heart rate (CHR) in individuals with PD and verify its validity, reliability, and sensitivity. Fifteen people with idiopathic PD, who were able to practice exercises, were recruited to participate in the study (71.1 ± 6.6 years). The study consisted of two experiments: i) the first one aimed to assess the validity and reliability of the protocol, with participants performing the test twice at a one-week interval; ii) the second experiment aimed to investigate the protocol sensitivity, with individuals being evaluated before and after an 8-week training program according to Parkinson-CHR intensity. In experiment 1, no differences between test and retest were observed in the time to cover the distances (400, 800 and 1200 m), the total heart rate, the critical heart rate, and critical speed (p > 0.05). In experiment 2, there was a reduction in time to cover 400 and 800 m as well as in the total heart rate for all distances after the 8-week training program. The Parkinson-CHR test is a reliable, reproducible, inexpensive, and non-invasive protocol to assess, prescribe, and monitor aerobic exercise intensity in people with PD.
Collapse
Affiliation(s)
| | - Carlos Augusto Kalva-Filho
- School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), São Paulo State University (Unesp), Bauru, SP, Brazil
| | - Murilo Henrique Faria
- School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), São Paulo State University (Unesp), Bauru, SP, Brazil
| | - Aline Prieto Silveira-Ciola
- School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), São Paulo State University (Unesp), Bauru, SP, Brazil
| | - Camila Torriani-Pasin
- Department of Physical Therapy and Movement Sciences, University of Texas, El Paso, USA
| | - Lucas Simieli
- School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), São Paulo State University (Unesp), Bauru, SP, Brazil
| | - Fabio Augusto Barbieri
- School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), São Paulo State University (Unesp), Bauru, SP, Brazil
| |
Collapse
|
2
|
Paterno A, Polsinelli G, Federico B. Changes of brain-derived neurotrophic factor (BDNF) levels after different exercise protocols: a systematic review of clinical studies in Parkinson's disease. Front Physiol 2024; 15:1352305. [PMID: 38444767 PMCID: PMC10912511 DOI: 10.3389/fphys.2024.1352305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Background: Brain-Derived Neurotrophic Factor (BDNF) serum levels are reduced in patients with Parkinson's Disease (PD). Objectives: This study aimed to assess the effect of exercise intensity, volume and type on BDNF levels in patients with PD. Methods: We searched clinicaltrials.gov, CINAHL, Embase, PubMed, Scopus, Web of Science for both controlled and non-controlled studies in patients with PD, published between 2003 and 2022, which assessed Brain-Derived Neurotrophic Factor before and after different exercise protocols. Exercise intensity was estimated using a time-weighted average of Metabolic Equivalent of Task (MET), while exercise volume was estimated by multiplying MET for the duration of exercise. Exercise types were classified as aerobic, resistance, balance and others. We computed two distinct standardized measures of effects: Hedges' g to estimate differences between experimental and control group in pre-post intervention BDNF changes, and Cohen's d to measure pre-post intervention changes in BDNF values for each study arm. Meta-regression and linear regression were used to assess whether these effect measures were associated with intensity, volume and type. PROSPERO registration number: CRD42023418629. Results: Sixteen studies (8 two-arm trials and 8 single-arm trials) including 370 patients with PD were eligible for the systematic review. Selected studies had a large variability in terms of population and intervention characteristics. The meta-analysis showed a significant improvement in BDNF levels in the exercise group compared to the control group, Hedges' g = 0.70 (95% CI: 0.03, 1.38), with substantial heterogeneity (I2 = 76.0%). Between-group differences in intensity were positively associated with change in BDNF in a subset of 5 controlled studies. In the analysis which included non-controlled studies, intensity and total exercise volume were both positively associated with BDNF change. No difference was found according to exercise type. Conclusion: Exercises of greater intensity may increase BDNF levels in patients with PD, while the role of volume of exercise needs to be further explored.
Collapse
Affiliation(s)
- Andrea Paterno
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Italy
| | | | | |
Collapse
|
3
|
Paola Caminiti S, Gallo S, Menegon F, Naldi A, Comi C, Tondo G. Lifestyle Modulators of Neuroplasticity in Parkinson's Disease: Evidence in Human Neuroimaging Studies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:602-613. [PMID: 37326116 DOI: 10.2174/1871527322666230616121213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by both motor and non-motor symptoms. A progressive neuronal loss and the consequent clinical impairment lead to deleterious effects on daily living and quality of life. Despite effective symptomatic therapeutic approaches, no disease-modifying therapies are currently available. Emerging evidence suggests that adopting a healthy lifestyle can improve the quality of life of PD patients. In addition, modulating lifestyle factors can positively affect the microstructural and macrostructural brain levels, corresponding to clinical improvement. Neuroimaging studies may help to identify the mechanisms through which physical exercise, dietary changes, cognitive enrichment, and exposure to substances modulate neuroprotection. All these factors have been associated with a modified risk of developing PD, with attenuation or exacerbation of motor and non-motor symptomatology, and possibly with structural and molecular changes. In the present work, we review the current knowledge on how lifestyle factors influence PD development and progression and the neuroimaging evidence for the brain structural, functional, and molecular changes induced by the adoption of positive or negative lifestyle behaviours.
Collapse
Affiliation(s)
| | - Silvia Gallo
- Neurology Unit, Department of Translational Medicine, Movement Disorders Centre, University of Piemonte Orientale, 28100 Novara, Italy
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, Movement Disorders Centre, University of Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Naldi
- Neurology Unit, San Giovanni Bosco Hospital, 10154 Turin, Italy
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy
| |
Collapse
|
4
|
Chan ST, Tai CH, Wang LY, Luh JJ, Lee YY. Influences of Aerobic Exercise on Motor Sequence Learning and Corticomotor Excitability in People With Parkinson's Disease. Neurorehabil Neural Repair 2023; 37:37-45. [PMID: 36636767 DOI: 10.1177/15459683221147006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND People with Parkinson's disease (PD) are known to have motor learning difficulties. Although numerous studies have demonstrated that a single bout of aerobic exercise (AEX) can facilitate motor learning in non-disabled adults, the same beneficial effect in PD is unknown. Furthermore, associated neuroplastic changes have not been investigated. OBJECTIVES This study aimed to determine whether a single bout of aerobic exercise (AEX) can facilitate motor sequence learning in people with PD and to investigate the associated neurophysiological changes. METHODS Thirty individuals with PD were recruited and randomized into the exercise group (PD + AEX) and non-exercise group (PD - AEX). At the first visit, corticomotor excitability was assessed using transcranial magnetic stimulation (TMS). All participants then performed a serial reaction time task (SRTT) followed by 20 minutes of moderately-high intensity aerobic exercise (AEX) for the PD + AEX group or rest for the PD - AEX group. The SRTT and TMS were reevaluated at 3 time points: immediately after aerobic exercise (AEX) or rest, on the second day after practice (D2), and a week after practice (D7). RESULTS Both groups showed improvement throughout practice. At retention, the PD + AEX group showed improved SRTT performance on D7 compared to D2 (P = .001), while the PD - AEX group showed no change in performance. TMS results showed that the PD + AEX group had significantly higher corticomotor excitability than the PD - AEX group on D7. CONCLUSION A single session of aerobic exercise (AEX) could enhance motor sequence learning and induce neuroplastic changes. Clinicians can consider providing aerobic exercise (AEX) after motor task training for people with PD. CLINICAL REGISTRATION NCT04189887 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Suet-Ting Chan
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei
| | - Li-Ying Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Jer-Junn Luh
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Ya-Yun Lee
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| |
Collapse
|
5
|
Physical Activity Coaching via Telehealth for People With Parkinson Disease: A Cohort Study. J Neurol Phys Ther 2022; 46:240-250. [PMID: 36170256 DOI: 10.1097/npt.0000000000000410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Physical activity (PA) has many known benefits for people with Parkinson disease (PD); however, many people do not meet recommended levels of frequency or intensity. We designed Engage-PD, a PA coaching program delivered via telehealth and grounded in self-determination theory to promote PA uptake and facilitate exercise self-efficacy in people with Parkinson disease. This study aimed to determine the feasibility and preliminary efficacy of Engage-PD, and to explore whether baseline characteristics were associated with outcomes. METHODS A single cohort of people with PD (n = 62, Hoehn and Yahr I-III) participated in the 3-month Engage-PD program, which consisted of up to 5 telehealth coaching sessions delivered by physical therapists. Feasibility was evaluated based on recruitment and retention rates, along with participants' feedback. Planned and unplanned PA, exercise self-efficacy (ESE), and individualized goals were assessed pre- and post-intervention. Relationships between baseline characteristics and changes in planned PA and ESE were also evaluated. RESULTS Recruitment (62%) and retention (85%) rates were high, and the intervention was well accepted and perceived by the participants. From pre- to postintervention, participants increased planned PA (d = 0.33), ESE (d = 1.20), and individualized goal performance (d = 1.63) and satisfaction (d = 1.70). Participants with lower baseline planned PA experienced greater improvements in planned PA, and those with lower baseline ESE experienced greater improvements in ESE. DISCUSSION AND CONCLUSIONS A telehealth PA coaching program for people with PD was feasible and potentially efficacious. Physical therapist-led coaching may be an important component of a consultative model of care starting early in the disease process.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A393).
Collapse
|
6
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Hengenius JB, Bohnen NI, Rosso A, Huppert TJ, Rosano C. Cortico-striatal functional connectivity and cerebral small vessel disease: Contribution to mild Parkinsonian signs. J Neuroimaging 2022; 32:352-362. [PMID: 34957653 PMCID: PMC9119198 DOI: 10.1111/jon.12949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Mild Parkinsonian signs (MPS) are common in older adults. We hypothesized that MPS are associated with lower functional connectivity (FC) in dopamine-dependent cortico-striatal networks, and these associations vary with white matter hyperintensity (WMH), a risk factor for MPS. METHODS We examined resting-state functional MRI in 266 participants (mean age 83; 57% female; 41% African American) with data on MPS (Unified Parkinson's Disease Rating Scale), demographics, cognition, muscle-skeletal, and cardiometabolic health. FC between cortex and striatum was examined separately for sensorimotor, executive, and limbic functional subregions. Logistic regression tested the association of FC in each network with MPS, adjusted for covariates. Interactions of FC by WMH were tested; and analyses were repeated stratified by WMH above/below the median. RESULTS Compared to those without MPS, those with MPS had lower cortico-striatal FC in the left executive network (adjusted odds ratio [95% confidence interval], p-value: 0.188 [0.043, 0.824], .027). The interaction with WMH was p = .064; left executive FC was inversely associated with MPS for high WMH (0.077 [0.010, 0.599], .014) but not low WMH participants (1.245 [0.128, 12.132], .850). CONCLUSIONS MPS appear related to lower executive network FC, robust to adjustment for other risk factors, and stronger for those with higher burden of WMH. Future longitudinal studies should examine the interplay between cerebral small vessel disease and connectivity influencing MPS.
Collapse
Affiliation(s)
- James B. Hengenius
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Theodore J. Huppert
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Li J, Guo J, Sun W, Mei J, Wang Y, Zhang L, Zhang J, Gao J, Su K, Lv Z, Feng X, Li R. Effects of Exercise on Parkinson’s Disease: A Meta-Analysis of Brain Imaging Studies. Front Hum Neurosci 2022; 16:796712. [PMID: 35250515 PMCID: PMC8889068 DOI: 10.3389/fnhum.2022.796712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundExercise is increasingly recognized as a key component of Parkinson’s disease (PD) treatment strategies, but the underlying mechanism of how exercise affects PD is not yet fully understood.ObjectiveThe activation likelihood estimation (ALE) method is used to study the mechanism of exercise affecting PD, providing a theoretical basis for studying exercise and PD, and promoting the health of patients with PD.MethodsRelevant keywords were searched on the PubMed, Cochrane Library, and Web of Science databases. Seven articles were finally included according to the screening criteria, with a total sample size of 97 individuals. Using the GingerALE 3.0.2 software, an ALE meta-analysis was performed using seven studies that met the requirements, and the probability of the cross-experiment activation of each voxel was calculated.ResultsThe meta-analysis produced seven clusters, and major activations were found in the cerebellum, occipital lobe, parietal lobe, and frontal lobe brain regions.ConclusionExercise for PD mainly results in the enhanced activation of the cerebellum, occipital lobe, parietal lobe, and frontal lobe. Exercise for PD does not cause a change in the activation of a single brain area, and the observed improvement may result from coordinated changes in multiple brain areas.
Collapse
Affiliation(s)
- Jingwen Li
- College of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jian Guo
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Weijuan Sun
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinjin Mei
- College of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yiying Wang
- College of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lihong Zhang
- College of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianyun Zhang
- College of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Kaiqi Su
- College of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhuan Lv
- College of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaodong Feng
- College of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Xiaodong Feng,
| | - Ruiqing Li
- College of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Ruiqing Li,
| |
Collapse
|
9
|
Hoang I, Ranchet M, Cheminon M, Derollepot R, Devos H, Perrey S, Luauté J, Danaila T, Paire-Ficout L. An intensive exercise-based training program reduces prefrontal activity during usual walking in patients with Parkinson’s disease. Clin Park Relat Disord 2022; 6:100128. [PMID: 34988428 PMCID: PMC8704467 DOI: 10.1016/j.prdoa.2021.100128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
Patients with Parkinson’s disease have increased prefrontal activity during usual walking. After SIROCCO training, prefrontal activity decreased and gait performance improved in patients. An intensive exercise-based training program increased automaticity of gait in patients with PD. Findings highlight the potential of neuroplasticity in PD after exercise.
Introduction Parkinson’s disease (PD) leads to a progressive loss of locomotor automaticity. Consequently, PD patients rely more on executive resources for the control of gait, resulting in increased prefrontal activity while walking. Exercise-based training programs may improve automaticity of walking and reduce prefrontal activity in this population. This study aimed to assess the effect of an intensive multidisciplinary exercise-based training program on prefrontal activity and gait performance during usual walking in PD patients. Method Fourteen patients (mean age: 67 ± 9; disease duration: 6 ± 5 years; Hoehn and Yahr score: 1.9 ± 0.6) were included in this study. They were assessed in ON stage at three different times at 5-week intervals: two times before the training program (T0 and T1) and once after the training program (T2). Gait performance (stride time, speed, stride length, cadence, and their respective coefficient of variation) and cortical activity in the dorsolateral prefrontal cortex (DLPFC) using functional near infrared spectroscopy (fNIRS) were measured during usual walking. Results Patients had reduced cortical activity of the DLPFC at T2 compared to T1 (p = 0.003). Patients had shorter stride time at T2 compared to T1 (p = 0.025) and tended to have longer stride length at T2 than at T1 (p = 0.056). Conclusion The training program led to positive effects on prefrontal activity and gait performance. Reduced prefrontal activity during usual walking after training program suggests that patients may have a greater reserve capacity to face more challenging walking conditions. Further studies will investigate the effect of this training on cortical activity during dual-task walking..
Collapse
Affiliation(s)
- I. Hoang
- TS2-LESCOT, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, F-69675 Lyon, France
- Corresponding author at: Université Gustave Eiffel, TS2-LESCOT, Cité des Mobilités, 25, Avenue François Mitterrand, Case 24, F-69675 Bron Cedex, France.
| | - M. Ranchet
- TS2-LESCOT, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, F-69675 Lyon, France
| | - M. Cheminon
- Service de Rééducation Neurologique, Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Lyon, France
| | - R. Derollepot
- TS2-LESCOT, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, F-69675 Lyon, France
| | - H. Devos
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, The University of Kansas Medical Center, Kansas City, KS, USA
| | - S. Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France
| | - J. Luauté
- Service de Rééducation Neurologique, Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Lyon, France
- Inserm UMR-S 1028, CNRS UMR 529, ImpAct, Centre de Recherche en Neurosciences de Lyon, université Lyon-1, 16, avenue Lépine, 69676 Bron, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - T. Danaila
- Centre de Neurosciences Cognitives, Service de Neurologie C, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - L. Paire-Ficout
- TS2-LESCOT, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, F-69675 Lyon, France
| |
Collapse
|
10
|
Tiihonen M, Westner BU, Butz M, Dalal SS. Parkinson's disease patients benefit from bicycling - a systematic review and meta-analysis. NPJ Parkinsons Dis 2021; 7:86. [PMID: 34561455 PMCID: PMC8463550 DOI: 10.1038/s41531-021-00222-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Many Parkinson's disease (PD) patients are able to ride a bicycle despite being severely compromised by gait disturbances up to freezing of gait. This review [PROSPERO CRD 42019137386] aimed to find out, which PD-related symptoms improve from bicycling, and which type of bicycling exercise would be most beneficial. Following a systematic database literature search, peer-reviewed studies with randomized control trials (RCT) and with non-randomized trials (NRCT) investigating the interventional effects of bicycling on PD patients were included. A quality analysis addressing reporting, design and possible bias of the studies, as well as a publication bias test was done. Out of 202 references, 22 eligible studies with 505 patients were analysed. An inverse variance-based analysis revealed that primary measures, defined as motor outcomes, benefitted from bicycling significantly more than cognitive measures. Additionally, secondary measures of balance, walking speed and capacity, and the PDQ-39 ratings improved with bicycling. The interventions varied in durations, intensities and target cadences. Conclusively, bicycling is particularly beneficial for the motor performance of PD patients, improving crucial features of gait. Furthermore, our findings suggest that bicycling improves the overall quality-of-life of PD patients.
Collapse
Affiliation(s)
- Marianne Tiihonen
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| | - Britta U Westner
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarang S Dalal
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder of the central nervous system. While it primarily affects motor function, patients eventually develop non-motor symptoms including depression, anxiety, and eventually dementia. Although there is currently no cure, treatment is aimed largely at improving quality of life though medication or surgical techniques to reduce motor symptoms. However, there is vast evidence of the benefits of physical activity as adjunct therapy for Parkinson's disease. In this review, we analyze 31 studies or reviews and highlight the role of exercise and rehabilitation in PD treatment. This study serves to provide clinicians with a comprehensive resource of the wide variety of exercises with proven benefit for patients affected by Parkinson's disease. Specifically, patients report significant improvements in motor function, cognition, mood and sleep habits.
Collapse
Affiliation(s)
- Mallory Emig
- Department of Neurology, 7547Saint Louis University, Saint Louis, MO, USA
| | - Tikku George
- Department of Neurology, 7547Saint Louis University, Saint Louis, MO, USA
| | - Justin K Zhang
- Department of Neurology, 7547Saint Louis University, Saint Louis, MO, USA
| | | |
Collapse
|
12
|
Conceição NR, Gobbi LTB, Nóbrega-Sousa P, Orcioli-Silva D, Beretta VS, Lirani-Silva E, Okano AH, Vitório R. Aerobic Exercise Combined With Transcranial Direct Current Stimulation Over the Prefrontal Cortex in Parkinson Disease: Effects on Cortical Activity, Gait, and Cognition. Neurorehabil Neural Repair 2021; 35:717-728. [PMID: 34047235 DOI: 10.1177/15459683211019344] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since people with Parkinson disease (PD) rely on limited prefrontal executive resources for the control of gait, interventions targeting the prefrontal cortex (PFC) may help in managing PD-related gait impairments. Transcranial direct current stimulation (tDCS) can be used to modulate PFC excitability and improve prefrontal cognitive functions and gait. OBJECTIVE We investigated the effects of adding anodal tDCS applied over the PFC to a session of aerobic exercise on gait, cognition, and PFC activity while walking in people with PD. METHODS A total of 20 people with PD participated in this randomized, double-blinded, sham-controlled crossover study. Participants attended two 30-minute sessions of aerobic exercise (cycling at moderate intensity) combined with different tDCS conditions (active- or sham-tDCS), 1 week apart. The order of sessions was counterbalanced across the sample. Anodal tDCS (2 mA for 20 minutes [active-tDCS] or 10 s [sham-tDCS]) targeted the PFC in the most affected hemisphere. Spatiotemporal gait parameters, cognitive functions, and PFC activity while walking were assessed before and immediately after each session. RESULTS Compared with the pre-assessment, participants decreased step time variability (effect size: -0.4), shortened simple and choice reaction times (effect sizes: -0.73 and -0.57, respectively), and increased PFC activity in the stimulated hemisphere while walking (effect size: 0.54) only after aerobic exercise + active-tDCS. CONCLUSION The addition of anodal tDCS over the PFC to a session of aerobic exercise led to immediate positive effects on gait variability, processing speed, and executive control of walking in people with PD.
Collapse
Affiliation(s)
- Núbia Ribeiro Conceição
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Priscila Nóbrega-Sousa
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Diego Orcioli-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Victor Spiandor Beretta
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Ellen Lirani-Silva
- Oregon Health and Science University, Department of Neurology, Portland, OR, USA
| | - Alexandre Hideki Okano
- Federal University of ABC (UFABC), Center for Mathematics, Computation and Cognition, São Bernardo do Campo, SP, Brazil
| | - Rodrigo Vitório
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil.,Oregon Health and Science University, Department of Neurology, Portland, OR, USA
| |
Collapse
|
13
|
Morley D, Dummett S, Kelly L, Jenkinson C. Development of an Exercise-Specific Parkinson's Disease Questionnaire: The PDQ-Exercise. Mov Disord 2021; 36:2156-2161. [PMID: 33991139 DOI: 10.1002/mds.28644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Exercise is now a significant and key component in the management of Parkinson's disease. However, no self-report, Parkinson's-specific measure of exercise currently exists. OBJECTIVE To develop a patient-reported outcome measure (PROM) for use in studies and clinical trials that aim to assess the efficacy of exercise therapy for people with Parkinson's (PwP). METHODS Participants were recruited via Parkinson's UK. To generate meaningful items, PwP participated in exploratory cognitive interviews. To pretest the items generated, PwP took part in two rounds of cognitive debrief interviews. Items were subsequently tested through an online survey that also included the eight-item Parkinson's Disease Questionnaire (PDQ-8) and Oxford Participation and Activities Questionnaire (Ox-PAQ). RESULTS Twenty PwP were interviewed for item generation. Analyses identified issues related to adopting and maintaining exercise, resulting in the generation of 10 items. Fourteen PwP took part in subsequent cognitive debrief interviews. Following the first 10 interviews, one item was removed, and minor adjustments were made to the wording of two items. Four final interviews verified that no further adjustments were required. Consequently, nine items were included in the validation survey, which was fully completed by 398 PwP. Inspection of floor and ceiling effects resulted in the removal of two further items. A principal component analysis identified a single seven-item factor explaining 61.6% of variance. Further analyses indicated that the measure demonstrates sound reliability and validity. CONCLUSIONS Results indicate that the PDQ-Exercise is an acceptable, reliable, and valid PROM. Further assessment of its psychometric properties is in progress. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David Morley
- Health Services Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sarah Dummett
- Health Services Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Laura Kelly
- Health Services Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Crispin Jenkinson
- Health Services Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Wanner P, Winterholler M, Gaßner H, Winkler J, Klucken J, Pfeifer K, Steib S. Acute exercise following skill practice promotes motor memory consolidation in Parkinson's disease. Neurobiol Learn Mem 2020; 178:107366. [PMID: 33358765 DOI: 10.1016/j.nlm.2020.107366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
Acute cardiovascular exercise has shown to promote neuroplastic processes supporting the consolidation of newly acquired motor skills in healthy adults. First results suggest that this concept may be transferred to populations with motor and cognitive dysfunctions. In this context, Parkinson's disease (PD) is highly relevant since patients demonstrate deficits in motor learning. Hence, in the present study we sought to explore the effect of a single post-practice exercise bout on motor memory consolidation in PD. For this purpose, 17 patients with PD (Hoehn and Yahr: 1 - 2.5, age: 60.1 ± 7.9 y) practiced a whole-body skill followed by either (i) a moderate-intense bout of cycling, or (ii) seated rest for a total of 30 min. The motor skill required the participants to balance on a tiltable platform (stabilometer) for 30 s. During skill practice, participants performed 15 trials followed by a retention test 1 day and 7 days later. We calculated time in balance (platform within ± 5° from horizontal) for each trial and within- and between-group differences in memory consolidation (i.e. offline learning = skill change from last acquisition block to retention tests) were analyzed. Groups revealed similar improvements during skill practice (F4,60 = 0.316, p = 0.866), but showed differences in offline learning, which were only evident after 7 days (F1,14 = 5.602, p = 0.033). Our results suggest that a single post-practice exercise bout is effective in enhancing long-term motor memory consolidation in a population with motor learning impairments. This may point at unique promoting effects of exercise on dopamine neurotransmission involved in memory formation. Future studies should investigate the potential role of exercise-induced effects on the dopaminergic system.
Collapse
Affiliation(s)
- Philipp Wanner
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | | | - Heiko Gaßner
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Klaus Pfeifer
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Simon Steib
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Germany; Institute of Sports and Sports Sciences, Human Movement, Training and Active Aging Department, Heidelberg University, Germany.
| |
Collapse
|
15
|
Małczyńska-Sims P, Chalimoniuk M, Sułek A. The Effect of Endurance Training on Brain-Derived Neurotrophic Factor and Inflammatory Markers in Healthy People and Parkinson's Disease. A Narrative Review. Front Physiol 2020; 11:578981. [PMID: 33329027 PMCID: PMC7711132 DOI: 10.3389/fphys.2020.578981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background: One purpose of the training conducted by people is to lose bodyweight and improve their physical condition. It is well-known that endurance training provides many positive changes in the body, not only those associated with current beauty standards. It also promotes biochemical changes such as a decreased inflammatory status, memory improvements through increased brain-derived neurotrophic factor levels, and reduced stress hormone levels. The positive effects of training may provide a novel solution for people with Parkinson's disease, as a way to reduce the inflammatory status and decrease neurodegeneration through stimulation of neuroplasticity and improved motor conditions. Aim: This narrative review aims to focus on the relationship between an acute bout of endurance exercise, endurance training (continuous and interval), brain-derived neurotrophic factor and inflammatory status in the three subject groups (young adults, older adult, and patients with Parkinson's disease), and to review the current state of knowledge about the possible causes of the differences in brain-derived neurotrophic factor and inflammatory status response to a bout of endurance exercise and endurance training. Furthermore, short practical recommendations for PD patients were formulated for improving the efficacy of the training process during rehabilitation. Methods: A narrative review was performed following an electronic search of the database PubMed/Medline and Web of Science for English-language articles between January 2010 and January 2020. Results: Analysis of the available publications with partial results revealed (1) a possible connection between the brain-derived neurotrophic factor level and inflammatory status, and (2) a more beneficial influence of endurance training compared with acute bouts of endurance exercise. Conclusion: Despite the lack of direct evidence, the results from studies show that endurance training may have a positive effect on inflammatory status and brain-derived neurotrophic factor levels. Introducing endurance training as part of the rehabilitation in Parkinson's disease might provide benefits for patients in addition to pharmacological therapy supplementation.
Collapse
Affiliation(s)
| | - Małgorzata Chalimoniuk
- Department of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Anna Sułek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
16
|
Tari B, Vanhie JJ, Belfry GR, Shoemaker JK, Heath M. Increased cerebral blood flow supports a single-bout postexercise benefit to executive function: evidence from hypercapnia. J Neurophysiol 2020; 124:930-940. [PMID: 32755360 DOI: 10.1152/jn.00240.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A single bout of aerobic exercise improves executive function; however, the mechanism for the improvement remains unclear. One proposal asserts that an exercise-mediated increase in cerebral blood flow (CBF) enhances the efficiency of executive-related cortical structures. To examine this, participants completed separate 10-min sessions of moderate- to heavy-intensity aerobic exercise, a hypercapnic environment (i.e., 5% CO2), and a nonexercise and nonhypercapnic control condition. The hypercapnic condition was included because it produces an increase in CBF independent of metabolic demands. An estimate of CBF was achieved via transcranial Doppler ultrasound and near-infrared spectroscopy that provided measures of middle cerebral artery blood velocity (BV) and deoxygenated hemoglobin (HHb), respectively. Exercise intensity was adjusted to match participant-specific changes in BV and HHb associated with the hypercapnic condition. Executive function was assessed before and after each session via antisaccades (i.e., saccade mirror-symmetrical to a target) because the task is mediated via the same executive networks that demonstrate task-dependent modulation following single and chronic bouts of aerobic exercise. Results showed that hypercapnic and exercise conditions were associated with comparable BV and HHb changes, whereas the control condition did not produce a change in either metric. In terms of antisaccade performance, the exercise and hypercapnic, but not control, conditions demonstrated improved postcondition reaction times (RT), and the magnitude of the hypercapnic and exercise-based increase in estimated CBF was reliably related to the postcondition improvement in RT. Accordingly, results evince that an increase in CBF represents a candidate mechanism for a postexercise improvement in executive function.NEW & NOTEWORTHY Single-bout aerobic exercise "boosts" executive function, and increased cerebral blood flow (CBF) has been proposed as a mechanism for the benefit. In this study, participants completed 10 min of aerobic exercise and 10 min of inhaling a hypercapnic gas, a manipulation known to increase CBF independently of metabolic demands. Both exercise and hypercapnic conditions improved executive function for at least 20 min. Accordingly, an increase in CBF is a candidate mechanism for the postexercise improvement in executive function.
Collapse
Affiliation(s)
- Benjamin Tari
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - James J Vanhie
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Glen R Belfry
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Matthew Heath
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Lavin KM, Ge Y, Sealfon SC, Nair VD, Wilk K, McAdam JS, Windham ST, Kumar PL, McDonald MLN, Bamman MM. Rehabilitative Impact of Exercise Training on Human Skeletal Muscle Transcriptional Programs in Parkinson's Disease. Front Physiol 2020; 11:653. [PMID: 32625117 PMCID: PMC7311784 DOI: 10.3389/fphys.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common motor neurodegenerative disease, and neuromuscular function deficits associated with PD contribute to disability. Targeting these symptoms, our laboratory has previously evaluated 16-week high-intensity resistance exercise as rehabilitative training (RT) in individuals with PD. We reported significant improvements in muscle mass, neuromuscular function (strength, power, and motor unit activation), indices of neuromuscular junction integrity, total and motor scores on the unified Parkinson's disease rating scale (UPDRS), and total and sub-scores on the 39-item PD Quality of Life Questionnaire (PDQ-39), supporting the use of RT to reverse symptoms. Our objective was to identify transcriptional networks that may contribute to RT-induced neuromuscular remodeling in PD. We generated transcriptome-wide skeletal muscle RNA-sequencing in 5 participants with PD [4M/1F, 67 ± 2 years, Hoehn and Yahr stages 2 (n = 3) and 3 (n = 2)] before and after 16-week high intensity RT to identify transcriptional networks that may in part underpin RT-induced neuromuscular remodeling in PD. Following RT, 304 genes were significantly upregulated, notably related to remodeling and nervous system/muscle development. Additionally, 402 genes, primarily negative regulators of muscle adaptation, were downregulated. We applied the recently developed Pathway-Level Information ExtractoR (PLIER) method to reveal coordinated gene programs (as latent variables, LVs) that differed in skeletal muscle among young (YA) and old (OA) healthy adults and PD (n = 12 per cohort) at baseline and in PD pre- vs. post-RT. Notably, one LV associated with angiogenesis, axon guidance, and muscle remodeling was significantly lower in PD than YA at baseline and was significantly increased by exercise. A different LV annotated to denervation, autophagy, and apoptosis was increased in both PD and OA relative to YA and was also reduced by 16-week RT in PD. Thus, this analysis identified two novel skeletal muscle transcriptional programs that are dysregulated by PD and aging, respectively. Notably, RT has a normalizing effect on both programs in individuals with PD. These results identify potential molecular transducers of the RT-induced improvements in neuromuscular remodeling and motor function that may aid in optimizing exercise rehabilitation strategies for individuals with PD.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venugopalan D. Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Katarzyna Wilk
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeremy S. McAdam
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel T. Windham
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preeti Lakshman Kumar
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Merry-Lynn N. McDonald
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Birmingham/Atlanta VA Geriatric Research, Education, and Clinical Center, Birmingham, AL, United States
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Heath M, Shukla D. A Single Bout of Aerobic Exercise Provides an Immediate "Boost" to Cognitive Flexibility. Front Psychol 2020; 11:1106. [PMID: 32547460 PMCID: PMC7273451 DOI: 10.3389/fpsyg.2020.01106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/29/2020] [Indexed: 01/31/2023] Open
Abstract
Executive function includes the core components of working memory, inhibitory control, and cognitive flexibility. A wealth of studies demonstrate that working memory and inhibitory control improve following a single bout of exercise; however, a paucity - and equivocal - body of work has demonstrated a similar benefit for cognitive flexibility. Cognitive flexibility underlies switching between different attentional- and motor-related goals, and a potential limitation of previous work examining this component in an exercise context is that they included tasks involving non-executive processes (i.e., numerosity, parity, and letter judgments). To address this issue, Experiment 1 employed a 20-min bout of aerobic exercise and examined pre- and immediate post-exercise cognitive flexibility via stimulus-driven (SD) and minimally delayed (MD) saccades ordered in an AABB task-switching paradigm. Stimulus-driven saccades are a standard task requiring a response at target onset, whereas MD saccades are a non-standard and top-down task requiring a response only after the target is extinguished. Work has shown that RTs for a SD saccade preceded by a MD saccade are longer than when a SD saccade is preceded by its same task-type, whereas the converse switch does not influence performance (i.e., the unidirectional switch-cost). Experiment 1 yielded a 28 ms and 8 ms unidirectional switch-cost pre- and post-exercise, respectively (ps < 0.001); however, the magnitude of the switch-cost was reduced post-exercise (p = 0.005). Experiment 2 involved a non-exercise control condition and yielded a reliable and equivalent magnitude unidirectional switch-cost at a pre- (28 ms) and post-break (26 ms) assessment (ps < 0.001). Accordingly, a single-bout of exercise improved task-switching efficiency and thereby provides convergent evidence that exercise provides a global benefit to the core components of executive function.
Collapse
Affiliation(s)
- Matthew Heath
- NeuroBehavioural Laboratory, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
19
|
King LA, Mancini M, Smulders K, Harker G, Lapidus JA, Ramsey K, Carlson-Kuhta P, Fling BW, Nutt JG, Peterson DS, Horak FB. Cognitively Challenging Agility Boot Camp Program for Freezing of Gait in Parkinson Disease. Neurorehabil Neural Repair 2020; 34:417-427. [PMID: 32249668 PMCID: PMC7217755 DOI: 10.1177/1545968320909331] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction. It is well documented that freezing of gait (FoG) episodes occur in situations that are mentally challenging, such as dual tasks, consistent with less automatic control of gait in people with Parkinson disease (PD) and FoG. However, most physical rehabilitation does not include such challenges. The purpose was to determine (1) feasibility of a cognitively challenging Agility Boot Camp-Cognitive (ABC-C) program and (2) effects of this intervention on FoG, dual-task cost, balance, executive function, and functional connectivity. Methods. A total of 46 people with PD and FoG enrolled in this randomized crossover trial. Each participant had 6 weeks of ABC-C and Education interventions. Outcome measures were the following: FoG, perceived and objective measures; dual-task cost on gait; balance; executive function; and right supplementary motor area (SMA)-pedunculopontine nucleus (PPN) functional connectivity. Effect sizes were calculated. Results. ABC-C had high compliance (90%), with a 24% dropout rate. Improvements after exercise, revealed by moderate and large effect sizes, were observed for subject perception of FoG after exercise, dual-task cost on gait speed, balance, cognition (Scales for Outcomes in Parkinson's disease-Cognition), and SMA-PPN connectivity. Conclusions. The ABC-C for people with PD and FoG is a feasible exercise program that has potential to improve FoG, balance, dual-task cost, executive function, and brain connectivity. The study provided effect sizes to help design future studies with more participants and longer duration to fully determine the potential to improve FoG.
Collapse
Affiliation(s)
- Laurie A King
- Oregon Health & Science University, Portland, OR, USA
| | | | - Katrijn Smulders
- Oregon Health & Science University, Portland, OR, USA
- Sint Maartenskliniek, Nijmegen, Gelderland, Netherlands
| | - Graham Harker
- Oregon Health & Science University, Portland, OR, USA
| | - Jodi A Lapidus
- Oregon Health & Science University, Portland, OR, USA
- Portland State University, Portland, OR, USA
| | | | | | - Brett W Fling
- Oregon Health & Science University, Portland, OR, USA
- Colorado State University, Fort Collins CO, USA
| | - John G Nutt
- Oregon Health & Science University, Portland, OR, USA
| | - Daniel S Peterson
- Oregon Health & Science University, Portland, OR, USA
- Arizona State University, Phoenix, AZ, USA
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - Fay B Horak
- Oregon Health & Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|
20
|
Cancela JM, Mollinedo I, Montalvo S, Vila Suárez ME. Effects of a High-Intensity Progressive-Cycle Program on Quality of Life and Motor Symptomatology in a Parkinson's Disease Population: A Pilot Randomized Controlled Trial. Rejuvenation Res 2020; 23:508-515. [PMID: 32336211 DOI: 10.1089/rej.2019.2267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The benefits of aerobic exercise in persons with Parkinson's disease (PD) have been widely studied. Recent studies support the use of high-intensity aerobic exercise to improve oxidative stress values and functional performance in PD patients. The aim of this study is ascertain whether high-intensity aerobic training with lower extremity cycle ergometers and balance training can improve motor symptoms and quality of life in a PD population of Hoehn and Yahr disability score 1-3. The intervention took place in rehabilitation centers in secondary care. A pilot randomized controlled trial was carried out with 14 outpatients participated in the 8-week study. They were composed of a control group (CG; n = 7) that followed a balance protocol and an experimental group (EG; n = 7) that performed high-intensity (70% heart rate reserve) aerobic workout using a lower extremity cycle ergometer and a balance protocol once a week. The primary outcome measures included the 8-Foot Up-and-Go test, 6-Minute Walk test, 2-Minute Step test, Parkinson's Disease Questionnaire (PDQ39), Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and Tinetti test. Significant improvements in the PDQ39 (F1.23 = 3.102; sig = 0.036), the MDS-UPDRS III (F1.23 = 4.723; sig = 0.033), and MDS-UPDRS Total (F1.23 = 4.117; sig = 0.047) were observed in the EG as against the CG. After taking into account the number of subjects in each group, the results suggest that the PD population can withstand high-intensity aerobic workouts with a lower extremity cycle ergometer. This exercise is a beneficial therapy for them because it reduces motor symptoms of the disease and furthermore increases and improves patient's quality of life.
Collapse
Affiliation(s)
- José M Cancela
- Faculty of Education and Sport Science, University of Vigo, Pontevedra, Spain.,Galicia Sur Health Research Institute (IIS Galicia Sur), HealthyFit Research Group, Sergas-UVIGO, Pontevedra, Spain
| | - Irimia Mollinedo
- Faculty of Education and Sport Science, University of Vigo, Pontevedra, Spain.,Galicia Sur Health Research Institute (IIS Galicia Sur), HealthyFit Research Group, Sergas-UVIGO, Pontevedra, Spain
| | - Sandro Montalvo
- Faculty of Education and Sport Science, University of Vigo, Pontevedra, Spain
| | - María Elena Vila Suárez
- Faculty of Education and Sport Science, University of Vigo, Pontevedra, Spain.,Galicia Sur Health Research Institute (IIS Galicia Sur), HealthyFit Research Group, Sergas-UVIGO, Pontevedra, Spain
| |
Collapse
|
21
|
Zhu M, Gong D. A Mouse Model of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Induced Parkinson Disease Shows that 2-Aminoquinoline Targets JNK Phosphorylation. Med Sci Monit 2020; 26:e920989. [PMID: 32333598 PMCID: PMC7197228 DOI: 10.12659/msm.920989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The pathological features of Parkinson disease (PD) include motor deficits, glial cell activation, and neuroinflammation. The neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has an oxidation product, 1-methyl-4-phenylpyridinium ion (MPP+). This study aimed to investigate the effects of 2-aminoquinoline on motor deficits in a mouse model of MPTP-induced PD and cultured mouse astrocytes treated with MPP+, to determine the effects on astrocyte proliferation and apoptosis. MATERIAL AND METHODS Motor deficits in the mouse model of MPTP-induced PD were investigated using the climbing time, suspension time, and swim time tests. Cultured mouse astrocytes were treated with MPP+, and mice with MPTP-induced PD were treated with increasing doses of 2-aminoquinoline. The MTT assay was used to measure astrocyte viability. Astrocyte apoptosis was assessed by confocal fluorescence microscopy using Annexin‑V and fluorescein isothiocyanate (FITC) staining. Western blot measured the levels of Bax, p‑JNK, Bcl‑2, and caspase‑3. RESULTS In the mouse model of MPTP-induced PD, motor deficit tests showed that 2-aminoquinoline reduced the impaired motor function during the climbing time, the suspension time, and the swim time tests in a dose-dependent manner. Pre-treatment with 2-aminoquinoline significantly reduced the proliferation and apoptosis of astrocytes induced by MPP+ in vitro, in a dose-dependent manner (P<0.05). The levels of p‑JNK and cleaved caspase‑3 levels were significantly reduced in astrocytes treated with MPP+ following pre-treatment with 2-aminoquinoline, which also reversed the increase in the Bax/Bcl‑2 ratio. CONCLUSIONS In the mouse model of MPTP-induced PD, 2-aminoquinoline reduced motor deficiencies, inhibited MPP+ activated astrocyte apoptosis, and regulated the Bax/Bcl-2 ratio by targeting p-JNK.
Collapse
Affiliation(s)
- Meie Zhu
- Department of Neurology, Jingzhou Central Hospital, The Second Affiliated Hospital of Changjiang University, Jingzhou, Hubei, China (mainland)
| | - Daokai Gong
- Department of Neurology, Jingzhou Central Hospital, The Second Affiliated Hospital of Changjiang University, Jingzhou, Hubei, China (mainland)
| |
Collapse
|
22
|
Amara AW, Wood KH, Joop A, Memon RA, Pilkington J, Tuggle SC, Reams J, Barrett MJ, Edwards DA, Weltman AL, Hurt CP, Cutter G, Bamman MM. Randomized, Controlled Trial of Exercise on Objective and Subjective Sleep in Parkinson's Disease. Mov Disord 2020; 35:947-958. [PMID: 32092190 DOI: 10.1002/mds.28009] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sleep dysfunction is common and disabling in persons with Parkinson's Disease (PD). Exercise improves motor symptoms and subjective sleep quality in PD, but there are no published studies evaluating the impact of exercise on objective sleep outcomes. The goal of this study was to to determine if high-intensity exercise rehabilitation combining resistance training and body-weight interval training, compared with a sleep hygiene control improved objective sleep outcomes in PD. METHODS Persons with PD (Hoehn & Yahr stages 2-3; aged ≥45 years, not in a regular exercise program) were randomized to exercise (supervised 3 times a week for 16 weeks; n = 27) or a sleep hygiene, no-exercise control (in-person discussion and monthly phone calls; n = 28). Participants underwent polysomnography at baseline and post-intervention. Change in sleep efficiency was the primary outcome, measured from baseline to post-intervention. Intervention effects were evaluated with general linear models with measurement of group × time interaction. As secondary outcomes, we evaluated changes in other aspects of sleep architecture and compared the effects of acute and chronic training on objective sleep outcomes. RESULTS The exercise group showed significant improvement in sleep efficiency compared with the sleep hygiene group (group × time interaction: F = 16.0, P < 0.001, d = 1.08). Other parameters of sleep architecture also improved in exercise compared with sleep hygiene, including total sleep time, wake after sleep onset, and slow-wave sleep. Chronic but not acute exercise improved sleep efficiency compared with baseline. CONCLUSIONS High-intensity exercise rehabilitation improves objective sleep outcomes in PD. Exercise is an effective nonpharmacological intervention to improve this disabling nonmotor symptom in PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Center for Exercise Medicine. Birmingham, Alabama, USA
| | - Kimberly H Wood
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Psychology, Samford University, Birmingham, Alabama, USA
| | - Allen Joop
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Raima A Memon
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer Pilkington
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - S Craig Tuggle
- UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John Reams
- UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew J Barrett
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - David A Edwards
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Arthur L Weltman
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher P Hurt
- UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gary Cutter
- UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marcas M Bamman
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Szymura J, Kubica J, Wiecek M, Pera J. The Immunomodulary Effects of Systematic Exercise in Older Adults and People with Parkinson's Disease. J Clin Med 2020; 9:jcm9010184. [PMID: 31936624 PMCID: PMC7019419 DOI: 10.3390/jcm9010184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
We sought to investigate whether regular balance training of moderate intensity (BT) has an effect on changes in selected cytokines, neurotrophic factors, CD200 and fractalkine in healthy older adults and participants with Parkinson’s disease (PD). Sixty-two subjects were divided into groups depending on experimental intervention: (1) group of people with PD participating in BT (PDBT), (2) group of healthy older people participating in BT (HBT), (3,4) control groups including healthy individuals (HNT) and people with PD (PDNT). Blood samples were collected twice: before and after 12 weeks of balance exercise (PDBT, HBT), or 12 weeks apart (PDNT, HNT). The study revealed significant increase of interleukin10 (PDBT, p = 0.026; HBT, p = 0.011), β-nerve growth factor (HBT, p = 0.002; PDBT, p = 0.016), transforming growth factor-β1 (PDBT, p = 0.018; HBT, p < 0.004), brain-derived neurotrophic factor (PDBT, p = 0.011; HBT, p < 0.001) and fractalkine (PDBT, p = 0.045; HBT, p < 0.003) concentration only in training groups. In PDBT, we have found a significant decrease of tumor necrosis factor alpha. No training effect on concentration of interleukin6, insulin-like growth factor 1 and CD200 was observed in both training and control groups. Regular training can modulate level of inflammatory markers and induce neuroprotective mechanism to reduce the inflammatory response.
Collapse
Affiliation(s)
- Jadwiga Szymura
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education in Krakow, 31–571 Krakow, Poland
- Correspondence: (J.S.); (J.K.)
| | - Jadwiga Kubica
- Institute of Physiotherapy, Faculty of Health Science, Jagiellonian University Medical College, 31–126 Krakow, Poland
- Correspondence: (J.S.); (J.K.)
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, 31–571 Krakow, Poland;
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, 31–503 Krakow, Poland;
| |
Collapse
|
24
|
Gladstone E, Narad ME, Hussain F, Quatman-Yates CC, Hugentobler J, Wade SL, Gubanich PJ, Kurowski BG. Neurocognitive and Quality of Life Improvements Associated With Aerobic Training for Individuals With Persistent Symptoms After Mild Traumatic Brain Injury: Secondary Outcome Analysis of a Pilot Randomized Clinical Trial. Front Neurol 2019; 10:1002. [PMID: 31620073 PMCID: PMC6759771 DOI: 10.3389/fneur.2019.01002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/02/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: To report secondary neurocognitive and quality of life outcomes for a pilot randomized clinical trial (RCT) of aerobic training for management of prolonged symptoms after a mild traumatic brain injury (mTBI) in adolescents. Setting: Outpatient research setting. Participants: Thirty adolescents between the ages of 12 and 17 years who sustained a mTBI and had between 4 and 16 weeks of persistent post-concussive symptoms. Design: Secondary outcome analysis of a partially masked RCT of sub-symptom exacerbation aerobic training compared with a full-body stretching program highlighting cognitive and quality of life outcomes. Main Measures: The secondary outcomes assessed included neurocognitive changes in fluid and crystallized age-adjusted cognition using the National Institutes of Health (NIH) toolbox and self and parent-reported total quality of life using the Pediatric Quality of Life Inventory. Results: Twenty-two percent of eligible participants enrolled in the trial. General linear models did not reveal statistically significant differences between groups. Within group analyses using paired t-tests demonstrated improvement in age-adjusted fluid cognition [t (13) = 3.39, p = 0.005, Cohen's d = 0.61] and crystallized cognition [t (13) = 2.63, p = 0.02, Cohen's d = 0.70] within the aerobic training group but no significant improvement within the stretching group. Paired t-tests demonstrated significant improvement in both self-reported and parent-reported total quality of life measures in the aerobic training group [self-report t (13) = 3.51, p = 0.004, Cohen's d = 0.94; parent-report t (13) = 6.5, p < 0.0001, Cohen's d = 1.80] and the stretching group [self-report t (14) = 4.20, p = 0.0009, Cohen's d = 1.08; parent-report t (14) = 4.06, p = 0.0012, Cohen's d = 1.045]. Conclusion: Quality of life improved significantly in both the aerobic exercise and stretching groups; however, this study suggests that only sub-symptom exacerbation aerobic training was potentially beneficial for neurocognitive recovery, particularly the fluid cognition subset in the NIH Toolbox. Limited sample size and variation in outcomes measures limited ability to detect between group differences. Future research should focus on developing larger studies to determine optimal timing post-injury and intensity of active rehabilitation to facilitate neurocognitive recovery and improve quality of life after mTBI. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02035579.
Collapse
Affiliation(s)
- Emily Gladstone
- Department of Physical Medicine and Rehabilitation, MetroHealth and Case Western Reserve College of Medicine, Cleveland, OH, United States
| | - Megan E Narad
- Division of Behavioral Medicine and Clinical Psychology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Fadhil Hussain
- College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Catherine C Quatman-Yates
- Division of Occupational Therapy and Physical Therapy, Department of Physical Therapy, Cincinnati Children's Hospital Medical Center, The Ohio State University, Columbus, OH, United States.,Division of Physical Therapy, Sports Medicine Research Institute, and Chronic Brain Injury Program, Columbus, OH, United States
| | - Jason Hugentobler
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Shari L Wade
- Division of Pediatric Rehabilitation Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Paul J Gubanich
- Division of Sports Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University College of Medicine, Cincinnati, OH, United States.,Department of Internal Medicine, University College of Medicine, Cincinnati, OH, United States
| | - Brad G Kurowski
- Division of Pediatric Rehabilitation Medicine, Departments of Pediatrics and Neurology and Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
25
|
Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical Activity and Brain Health. Genes (Basel) 2019; 10:genes10090720. [PMID: 31533339 PMCID: PMC6770965 DOI: 10.3390/genes10090720] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Physical activity (PA) has been central in the life of our species for most of its history, and thus shaped our physiology during evolution. However, only recently the health consequences of a sedentary lifestyle, and of highly energetic diets, are becoming clear. It has been also acknowledged that lifestyle and diet can induce epigenetic modifications which modify chromatin structure and gene expression, thus causing even heritable metabolic outcomes. Many studies have shown that PA can reverse at least some of the unwanted effects of sedentary lifestyle, and can also contribute in delaying brain aging and degenerative pathologies such as Alzheimer’s Disease, diabetes, and multiple sclerosis. Most importantly, PA improves cognitive processes and memory, has analgesic and antidepressant effects, and even induces a sense of wellbeing, giving strength to the ancient principle of “mens sana in corpore sano” (i.e., a sound mind in a sound body). In this review we will discuss the potential mechanisms underlying the effects of PA on brain health, focusing on hormones, neurotrophins, and neurotransmitters, the release of which is modulated by PA, as well as on the intra- and extra-cellular pathways that regulate the expression of some of the genes involved.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement (Dipartimento di Scienze Psicologiche, Pedagogiche, dell'Esercizio fisico e della Formazione), University of Palermo, 90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
26
|
Microglia as possible therapeutic targets for autism spectrum disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:223-245. [PMID: 31601405 DOI: 10.1016/bs.pmbts.2019.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malfunctions of the nervous and immune systems are now recognized to be fundamental causes of autism spectrum disorders (ASDs). Studies have suggested that the brain's resident immune cells, microglia are possible key players in ASDs. Specifically, deficits in synaptic pruning by microglia may underlie the pathogenesis of ASDs, in which excess synapses are occasionally reported. This idea has driven researchers to investigate causal links between microglial dysfunction and ASDs. In this review, we first introduce the characteristics of microglia in ASD brains and discuss their possible roles in the pathogenesis of ASDs. We also refer to immunomodulatory agents that could be potentially used as symptomatic therapies for ASDs in light of their ability to modify microglial functions. Finally, we will mention a possible strategy to radically cure some of the symptoms reported in ASDs through reorganizing neural circuits via microglia-dependent synaptic pruning.
Collapse
|
27
|
Mehren A, Diaz Luque C, Brandes M, Lam AP, Thiel CM, Philipsen A, Özyurt J. Intensity-Dependent Effects of Acute Exercise on Executive Function. Neural Plast 2019; 2019:8608317. [PMID: 31281346 PMCID: PMC6589258 DOI: 10.1155/2019/8608317] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/05/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
Numerous studies suggest beneficial effects of aerobic exercise at moderate intensity on cognition, while the effects of high-intensity exercise are less clear. This study investigated the acute effects of exercise at moderate and high intensities on executive functions in healthy adults, including functional MRI to examine the underlying neural mechanisms. Furthermore, the association between exercise effects and cardiorespiratory fitness was examined. 64 participants performed in two executive function tasks (flanker and Go/No-go tasks), while functional MR images were collected, following two conditions: in the exercise condition, they cycled on an ergometer at either moderate or high intensity (each n = 32); in the control condition, they watched a movie. Differences in behavioral performance and brain activation between the two conditions were compared between groups. Further, correlations between cardiorespiratory fitness and exercise effects on neural and behavioral correlates of executive performance were calculated. Moderate exercise compared to high-intensity exercise was associated with a tendency towards improved behavioral performance (sensitivity index d') in the Go/No-go task and increased brain activation during hit trials in areas related to executive function, attention, and motor processes (insula, superior frontal gyrus, precentral gyrus, and supplementary motor area). Exercise at high intensity was associated with decreased brain activation in those areas and no changes in behavioral performance. Exercise had no effect on brain activation in the flanker task, but an explorative analysis revealed that reaction times improved after high-intensity exercise. Higher cardiorespiratory fitness was correlated with increased brain activation after moderate exercise and decreased brain activation after high-intensity exercise. These data show that exercise at moderate vs. high intensity has different effects on executive task performance and related brain activation changes as measured by fMRI and that cardiorespiratory fitness might be a moderating factor of acute exercise effects. Thus, our results may contribute to further clarify the neurophysiological mechanisms underlying the beneficial effects of exercise on cognition.
Collapse
Affiliation(s)
- Aylin Mehren
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Psychiatry and Psychotherapy, School of Medicine and Health Sciences, University Hospital Karl-Jaspers-Klinik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Cecilia Diaz Luque
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Mirko Brandes
- Leibniz Institute for Prevention Research and Epidemiology-BIPS GmbH, Department of Prevention and Evaluation, Unit Applied Health Intervention Research, Bremen, Germany
| | - Alexandra P. Lam
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Christiane M. Thiel
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Jale Özyurt
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
28
|
Gibala MJ, Heisz JJ, Nelson AJ. INTERVAL TRAINING FOR CARDIOMETABOLIC AND BRAIN HEALTH. ACSM'S HEALTH & FITNESS JOURNAL 2018. [DOI: 10.1249/fit.0000000000000428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|