1
|
Steffens DC, Garrett ME, Soldano KL, McQuoid DR, Ashley-Koch AE, Potter GG. Genome-wide screen to identify genetic loci associated with cognitive decline in late-life depression. Int Psychogeriatr 2024; 36:1021-1029. [PMID: 39894582 PMCID: PMC7794099 DOI: 10.1017/s1041610220001143] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study sought to conduct a comprehensive search for genetic risk of cognitive decline in the context of geriatric depression. DESIGN A genome-wide association study (GWAS) analysis in the Neurocognitive Outcomes of Depression in the Elderly (NCODE) study. SETTING Longitudinal, naturalistic follow-up study. PARTICIPANTS Older depressed adults, both outpatients and inpatients, receiving care at an academic medical center. MEASUREMENTS The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery was administered to the study participants at baseline and a minimum of twice within a subsequent 3-year period in order to measure cognitive decline. A GWAS analysis was conducted to identify genetic variation that is associated with baseline and change in the CERAD Total Score (CERAD-TS) in NCODE. RESULTS The GWAS of baseline CERAD-TS revealed a significant association with an intergenic single-nucleotide polymorphism (SNP) on chromosome 6, rs17662598, that surpassed adjustment for multiple testing (p = 3.7 × 10-7; false discovery rate q = 0.0371). For each additional G allele, average baseline CERAD-TS decreased by 8.656 points. The most significant SNP that lies within a gene was rs11666579 in SLC27A1 (p = 1.1 × 10-5). Each additional copy of the G allele was associated with an average decrease of baseline CERAD-TS of 4.829 points. SLC27A1 is involved with processing docosahexaenoic acid (DHA), an endogenous neuroprotective compound in the brain. Decreased levels of DHA have been associated with the development of Alzheimer's disease. The most significant SNP associated with CERAD-TS decline over time was rs73240021 in GRXCR1 (p = 1.1 × 10-6), a gene previously linked with deafness. However, none of the associations within genes survived adjustment for multiple testing. CONCLUSIONS Our GWAS of cognitive function and decline among individuals with late-life depression (LLD) has identified promising candidate genes that, upon replication in other cohorts of LLD, may be potential biomarkers for cognitive decline and suggests DHA supplementation as a possible therapy of interest.
Collapse
Affiliation(s)
- D C Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - M E Garrett
- Department of Medicine, Duke University Medicine Center, Durham, NC, USA
| | - K L Soldano
- Department of Medicine, Duke University Medicine Center, Durham, NC, USA
| | - D R McQuoid
- Department of Psychiatry, Duke University Medicine Center, Durham, NC, USA
| | - A E Ashley-Koch
- Department of Medicine, Duke University Medicine Center, Durham, NC, USA
| | - G G Potter
- Department of Psychiatry, Duke University Medicine Center, Durham, NC, USA
| |
Collapse
|
2
|
Chen Y, Li Z, Ge X, Lv H, Geng Z. Identification of novel hub genes for Alzheimer's disease associated with the hippocampus using WGCNA and differential gene analysis. Front Neurosci 2024; 18:1359631. [PMID: 38516314 PMCID: PMC10954837 DOI: 10.3389/fnins.2024.1359631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Background Alzheimer's disease (AD) is a common, refractory, progressive neurodegenerative disorder in which cognitive and memory deficits are highly correlated with abnormalities in hippocampal brain regions. There is still a lack of hippocampus-related markers for AD diagnosis and prevention. Methods Differently expressed genes were identified in the gene expression profile GSE293789 in the hippocampal brain region. Enrichment analyses GO, KEGG, and GSEA were used to identify biological pathways involved in the DEGs and AD-related group. WGCNA was used to identify the gene modules that are highly associated with AD in the samples. The intersecting genes of the genes in DEGs and modules were extracted and the top ten ranked hub genes were identified. Finally GES48350 was used as a validation cohort to predict the diagnostic efficacy of hub genes. Results From GSE293789, 225 DEGs were identified, which were mainly associated with calcium response, glutamatergic synapses, and calcium-dependent phospholipid-binding response. WGCNA analysis yielded dark green and bright yellow modular genes as the most relevant to AD. From these two modules, 176 genes were extracted, which were taken to be intersected with DEGs, yielding 51 intersecting genes. Then 10 hub genes were identified in them: HSPA1B, HSPB1, HSPA1A, DNAJB1, HSPB8, ANXA2, ANXA1, SOX9, YAP1, and AHNAK. Validation of these genes was found to have excellent diagnostic performance. Conclusion Ten AD-related hub genes in the hippocampus were identified, contributing to further understanding of AD development in the hippocampus and development of targets for therapeutic prevention.
Collapse
Affiliation(s)
- Yang Chen
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Zhaoxiang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Xin Ge
- Science and Education Section, Baoding First Central Hospital, Baoding, China
| | - Huandi Lv
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Dong Y, Li T, Ma Z, Zhou C, Wang X, Li J. HSPA1A, HSPA2, and HSPA8 Are Potential Molecular Biomarkers for Prognosis among HSP70 Family in Alzheimer's Disease. DISEASE MARKERS 2022; 2022:9480398. [PMID: 36246562 PMCID: PMC9553556 DOI: 10.1155/2022/9480398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, which leads to impairment of cognition and memory. The heat shock protein 70 (HSP70) family plays an important role in the pathogenesis of AD. It is known to regulate protein misfolding in a variety of diseases, including inhibition of Aβ aggregation and NFT formation in AD. As yet, the diagnostic molecular markers of AD remain unclear. Herein, we sought to investigate molecular markers of HSP70 family that can affect diagnosis and treatment in AD through computational analysis. In this study, the intersection between HSP70 family members and immune molecules was taken to screen immune-related HSP70 family genes. Based on the datasets from the NCBI-Gene Expression Omnibus (GEO) database, we found that the expression levels of HSPA1A and HSPA2 were significantly increased in AD samples, while HSPA8 significantly decreased. Surprisingly, the combination of the 3 hub genes had a good diagnosis of AD via receiver operating characteristic curve (ROC). Moreover, the clinical value of the 3 hub genes was further assessed by the Spearman correlation analysis with AD-related genes, β-secretase activity, and γ-secretase activity. In terms of immune cell infiltration, we showed that the distribution of seven immune cell types (macrophages M2, neutrophils, T cells CD4 memory activated, macrophages M0, NK cells activated, plasma cells, and T cells follicular helper) was associated with the occurrence of AD by CIBERSORT. Furthermore, our data suggested that EP300, MYC, TP53, JUN, CREBBP, and ESR1 might be key transcription factors (TFs) for the 3 hub genes. In general, these findings suggest that HSPA1A, HSPA2, and HSPA8 are potential molecular biomarkers for prognosis among HSP70 family in AD, and it provides a new perspective on diagnostic and therapeutic targets for AD.
Collapse
Affiliation(s)
- Yeqing Dong
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Tongxin Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Zhonghui Ma
- Department of Laboratory Medicine, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Chi Zhou
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Xinxu Wang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| |
Collapse
|
4
|
Norkeviciene A, Gocentiene R, Sestokaite A, Sabaliauskaite R, Dabkeviciene D, Jarmalaite S, Bulotiene G. A Systematic Review of Candidate Genes for Major Depression. Medicina (B Aires) 2022; 58:medicina58020285. [PMID: 35208605 PMCID: PMC8875554 DOI: 10.3390/medicina58020285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The aim of this systematic review was to analyse which candidate genes were examined in genetic association studies and their association with major depressive disorder (MDD). Materials and Methods: We searched PUBMED for relevant studies published between 1 July 2012 and 31 March 2019, using combinations of keywords: “major depressive disorder” OR “major depression” AND “gene candidate”, “major depressive disorder” OR “major depression” AND “polymorphism”. Synthesis focused on assessing the likelihood of bias and investigating factors that may explain differences between the results of studies. For selected gene list after literature overview, functional enrichment analysis and gene ontology term enrichment analysis were conducted. Results: 141 studies were included in the qualitative review of gene association studies focusing on MDD. 86 studies declared significant results (p < 0.05) for 172 SNPs in 85 genes. The 13 SNPs associations were confirmed by at least two studies. The 18 genetic polymorphism associations were confirmed in both the previous and this systematic analysis by at least one study. The majority of the studies (68.79 %) did not use or describe power analysis, which may have had an impact over the significance of their results. Almost a third of studies (N = 54) were conducted in Chinese Han population. Conclusion: Unfortunately, there is still insufficient data on the links between genes and depression. Despite the reported genetic associations, most studies were lacking in statistical power analysis, research samples were small, and most gene polymorphisms have been confirmed in only one study. Further genetic research with larger research samples is needed to discern whether the relationship is random or causal. Summations: This systematic review had summarized all reported genetic associations and has highlighted the genetic associations that have been replicated. Limitations: Unfortunately, most gene polymorphisms have been confirmed only once, so further studies are warranted for replicating these genetic associations. In addition, most studies included a small number of MDD cases that could be indicative for false positive. Considering that polymorphism loci and associations with MDD is also vastly dependent on interpersonal variation, extensive studies of gene interaction pathways could provide more answers to the complexity of MDD.
Collapse
Affiliation(s)
- Audrone Norkeviciene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Romena Gocentiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Agne Sestokaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Rasa Sabaliauskaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Daiva Dabkeviciene
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Sonata Jarmalaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Giedre Bulotiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
- Correspondence:
| |
Collapse
|
5
|
Remes O, Mendes JF, Templeton P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sci 2021; 11:1633. [PMID: 34942936 PMCID: PMC8699555 DOI: 10.3390/brainsci11121633] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is one of the leading causes of disability, and, if left unmanaged, it can increase the risk for suicide. The evidence base on the determinants of depression is fragmented, which makes the interpretation of the results across studies difficult. The objective of this study is to conduct a thorough synthesis of the literature assessing the biological, psychological, and social determinants of depression in order to piece together the puzzle of the key factors that are related to this condition. Titles and abstracts published between 2017 and 2020 were identified in PubMed, as well as Medline, Scopus, and PsycInfo. Key words relating to biological, social, and psychological determinants as well as depression were applied to the databases, and the screening and data charting of the documents took place. We included 470 documents in this literature review. The findings showed that there are a plethora of risk and protective factors (relating to biological, psychological, and social determinants) that are related to depression; these determinants are interlinked and influence depression outcomes through a web of causation. In this paper, we describe and present the vast, fragmented, and complex literature related to this topic. This review may be used to guide practice, public health efforts, policy, and research related to mental health and, specifically, depression.
Collapse
Affiliation(s)
- Olivia Remes
- Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK
| | | | - Peter Templeton
- IfM Engage Limited, Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK;
- The William Templeton Foundation for Young People’s Mental Health (YPMH), Cambridge CB2 0AH, UK
| |
Collapse
|
6
|
BDNF Genetic Variant and Its Genotypic Fluctuation in Major Depressive Disorder. Behav Neurol 2021; 2021:7117613. [PMID: 34760029 PMCID: PMC8575598 DOI: 10.1155/2021/7117613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder (MDD) still has an unknown etiology and mechanisms. Many studies have been conducted seeking to associate and understand the connection of different genetic variants to this disease. Researchers have extensively studied the brain-derived neurotrophic factor (BDNF) Val66Met genetic variant in MDD; yet, their findings remain inconsistent. This systematic review sought to verify the GG (Val/Val) genotype frequency fluctuation in different populations with MDD. For this, we searched in different databases and, after applying the eligibility criteria, selected 17 articles. Most studies demonstrate the higher frequency of the ancestral (wild) GG (Val/Val) genotype, although associations of the polymorphic A (Met) allele, changes in BDNF protein serum levels, or both were also found in MDD, whether related to the disease's development or other factors. Nevertheless, despite these findings, disagreements between several studies are seen. For this reason, further BDNF Val66Met genetic variant studies should not only bridge the gap in the knowledge of this polymorphism's role in MDD's different facets but also analyze the genotypic and phenotypic heterogeneity in different populations to help provide a better quality of life for patients.
Collapse
|
7
|
Yashin AI, Wu D, Arbeev K, Bagley O, Akushevich I, Duan M, Yashkin A, Ukraintseva S. Interplay between stress-related genes may influence Alzheimer's disease development: The results of genetic interaction analyses of human data. Mech Ageing Dev 2021; 196:111477. [PMID: 33798591 PMCID: PMC8173104 DOI: 10.1016/j.mad.2021.111477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023]
Abstract
Emerging evidence from experimental and clinical research suggests that stress-related genes may play key roles in AD development. The fact that genome-wide association studies were not able to detect a contribution of such genes to AD indicates the possibility that these genes may influence AD non-linearly, through interactions of their products. In this paper, we selected two stress-related genes (GCN2/EIF2AK4 and APP) based on recent findings from experimental studies which suggest that the interplay between these genes might influence AD in humans. To test this hypothesis, we evaluated the effects of interactions between SNPs in these two genes on AD occurrence, using the Health and Retirement Study data on white indidividuals. We found several interacting SNP-pairs whose associations with AD remained statistically significant after correction for multiple testing. These findings emphasize the importance of nonlinear mechanisms of polygenic AD regulation that cannot be detected in traditional association studies. To estimate collective effects of multiple interacting SNP-pairs on AD, we constructed a new composite index, called Interaction Polygenic Risk Score, and showed that its association with AD is highly statistically significant. These results open a new avenue in the analyses of mechanisms of complex multigenic AD regulation.
Collapse
Affiliation(s)
| | - Deqing Wu
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | | - Olivia Bagley
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | |
Collapse
|
8
|
Poumeaud F, Mircher C, Smith PJ, Faye PA, Sturtz FG. Deciphering the links between psychological stress, depression, and neurocognitive decline in patients with Down syndrome. Neurobiol Stress 2021; 14:100305. [PMID: 33614867 PMCID: PMC7879042 DOI: 10.1016/j.ynstr.2021.100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/27/2022] Open
Abstract
The relationships between psychological stress and cognitive functions are still to be defined despite some recent progress. Clinically, we noticed that patients with Down syndrome (DS) may develop rapid neurocognitive decline and Alzheimer's disease (AD) earlier than expected, often shortly after a traumatic life event (bereavement over the leave of a primary caregiver, an assault, modification of lifestyle, or the loss of parents). Of course, individuals with DS are naturally prone to develop AD, given the triplication of chromosome 21. However, the relatively weak intensity of the stressful event and the rapid pace of cognitive decline after stress in these patients have to be noticed. It seems DS patients react to stress in a similar manner normal persons react to a very intense stress, and thereafter develop a state very much alike post-traumatic stress disorders. Unfortunately, only a few studies have studied stress-induced regression in patients with DS. Thus, we reviewed the biochemical events involved in psychological stress and found some possible links with cognitive impairment and AD. Interestingly, these links could probably be also applied to non-DS persons submitted to an intense stress. We believe these links should be further explored as a better understanding of the relationships between stress and cognition could help in many situations including individuals of the general population.
Collapse
Affiliation(s)
- François Poumeaud
- Univ. Limoges, Peripheral Neuropathies, EA6309, F-87000, Limoges, France
| | - Clotilde Mircher
- Institut Jérôme Lejeune, 37 Rue des Volontaires, F-75015, Paris, France
| | - Peter J. Smith
- University of Chicago, 950 E. 61st Street, SSC Suite 207, Chicago, IL, 60637, USA
| | - Pierre-Antoine Faye
- Univ. Limoges, Peripheral Neuropathies, EA6309, F-87000, Limoges, France
- CHU Limoges, Department of Biochemistry and Molecular Biology, F-87000, Limoges, France
| | - Franck G. Sturtz
- Univ. Limoges, Peripheral Neuropathies, EA6309, F-87000, Limoges, France
- CHU Limoges, Department of Biochemistry and Molecular Biology, F-87000, Limoges, France
| |
Collapse
|
9
|
Antonyová V, Kejík Z, Brogyányi T, Kaplánek R, Pajková M, Talianová V, Hromádka R, Masařík M, Sýkora D, Mikšátková L, Martásek P, Jakubek M. Role of mtDNA disturbances in the pathogenesis of Alzheimer's and Parkinson's disease. DNA Repair (Amst) 2020; 91-92:102871. [PMID: 32502755 DOI: 10.1016/j.dnarep.2020.102871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (e.g. Alzheimer's and Parkinson's disease) are becoming increasingly problematic to healthcare systems. Therefore, their underlying mechanisms are trending topics of study in medicinal research. Numerous studies have evidenced a strong association between mitochondrial DNA disturbances (e.g. oxidative damage, mutations, and methylation shifts) and the initiation and progression of neurodegenerative diseases. Therefore, this review discusses the risk and development of neurodegenerative diseases in terms of disturbances in mitochondrial DNA and as a part of a complex ecosystem that includes other important mechanisms (e.g. neuroinflammation and the misfolding and aggregation of amyloid-β peptides, α-synuclein, and tau proteins). In addition, the influence of individual mitochondrial DNA haplogroups on the risk and development of neurodegenerative diseases is also described and discussed.
Collapse
Affiliation(s)
- Veronika Antonyová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Tereza Brogyányi
- Depertment of Pathological Physiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Robert Kaplánek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Martina Pajková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Veronika Talianová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Róbert Hromádka
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Michal Masařík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - David Sýkora
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Lucie Mikšátková
- BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic.
| | - Milan Jakubek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic.
| |
Collapse
|
10
|
Shared genetic etiology underlying Alzheimer's disease and major depressive disorder. Transl Psychiatry 2020; 10:88. [PMID: 32152295 PMCID: PMC7062839 DOI: 10.1038/s41398-020-0769-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 01/22/2023] Open
Abstract
Patients with late-onset Alzheimer's disease (LOAD) frequently manifest comorbid neuropsychiatric symptoms with depression and anxiety being most frequent, and individuals with major depressive disorder (MDD) have an increased prevalence of LOAD. This suggests shared etiologies and intersecting pathways between LOAD and MDD. We performed pleiotropy analyses using LOAD and MDD GWAS data sets from the International Genomics of Alzheimer's Project (IGAP) and the Psychiatric Genomics Consortium (PGC), respectively. We found a moderate enrichment for SNPs associated with LOAD across increasingly stringent levels of significance with the MDD GWAS association (LOAD|MDD), of maximum four and eightfolds, including and excluding the APOE-region, respectively. Association analysis excluding the APOE-region identified numerous SNPs corresponding to 40 genes, 9 of which are known LOAD-risk loci primarily in chromosome 11 regions that contain the SPI1 gene and MS4A genes cluster, and others were novel pleiotropic risk-loci for LOAD conditional with MDD. The most significant associated SNPs on chromosome 11 overlapped with eQTLs found in whole-blood and monocytes, suggesting functional roles in gene regulation. The reverse conditional association analysis (MDD|LOAD) showed a moderate level, ~sevenfold, of polygenic overlap, however, no SNP showed significant association. Pathway analyses replicated previously reported LOAD biological pathways related to immune response and regulation of endocytosis. In conclusion, we provide insights into the overlapping genetic signatures underpinning the common phenotypic manifestations and inter-relationship between LOAD and MDD. This knowledge is crucial to the development of actionable targets for novel therapies to treat depression preceding dementia, in an effort to delay or ultimately prevent the onset of LOAD.
Collapse
|
11
|
Misra A, Chakrabarti SS, Gambhir IS, Kaur U, Prasad S. APOE4 allele in north Indian elderly patients with dementia or late onset depression-a multiple-disease case control study. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2019; 8:135-140. [PMID: 31998815 PMCID: PMC6802692 DOI: 10.22099/mbrc.2019.34417.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of the study was to analyze the frequency of APOE4 allele in elderly patients with Alzheimer's or vascular dementia or depression; compare these to age/sex matched controls; compare the results with established literature and highlight new findings. A single center, multiple disease, case-control study was performed with three case groups- probable AD patients (n=36), vascular dementia patients (n=29) and depression patients (n=20) and with a control group (n=32). APOE genotyping was performed in whole blood samples collected from patients and controls by restriction isotyping using the enzymes AflIII and HaeII. There was significant difference in frequency distribution of E4 allele between the AD (12/72; 16.7%) and control groups (3/64; 4.7%) (P=0.03). However, no significant difference was found in any of the other comparisons. The current study demonstrates absence of a significant association between APOE4 positivity and presence of late-onset depression in the north Indian elderly and reinforces the higher APOE4 prevalence in LOAD patients but not in VD patients. It is the first study of its kind from the northern part of India involving multiple disease groups and lays the framework for larger cohort studies.
Collapse
Affiliation(s)
- Anamika Misra
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sankha Shubhra Chakrabarti
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India,Corresponding Author: Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India, PIN-221005,Tel: +919-935615563, E. mail:
| | - Indrajeet Singh Gambhir
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Upinder Kaur
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shukla Prasad
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Fišar Z, Hansíková H, Křížová J, Jirák R, Kitzlerová E, Zvěřová M, Hroudová J, Wenchich L, Zeman J, Raboch J. Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer's disease and depressive disorder. Mitochondrion 2019; 48:67-77. [PMID: 31377247 DOI: 10.1016/j.mito.2019.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
We analyzed activities of complex I, II, III, and IV, and citrate synthase (CS) in patients with major depressive disorder (MDD) or Alzheimer's disease (AD) presenting with or without depression. Associations of these parameters with disease or disease severity were observed in both AD and MDD; however, mean values of mitochondrial parameters were significantly altered in AD but not in MDD. Potential mitochondrial dysfunction in MDD seems not to be caused by disturbed activity of CS or respiratory complexes. In AD, a decrease in the activity of CS and complex IV may cause mitochondrial dysfunction, whereas an increase in activities of other mitochondrial complexes or their ratios to CS may be an adaptive response. The data indicate that comorbid depression in AD is associated with increased complex II activity. The mitochondrial parameters measured can be included in the panel of biomarkers of AD.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Hana Hansíková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic.
| | - Jana Křížová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic.
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, Praha 2 128 00, Prague 2, Czech Republic.
| | - László Wenchich
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic.
| | - Jiří Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic.
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
13
|
Li G, Zeng L, Cheng H, Han J, Zhang X, Xie H. Acupuncture Administration Improves Cognitive Functions and Alleviates Inflammation and Nuclear Damage by Regulating Phosphatidylinositol 3 Kinase (PI3K)/Phosphoinositol-Dependent Kinase 1 (PDK1)/Novel Protein Kinase C (nPKC)/Rac 1 Signaling Pathway in Senescence-Accelerated Prone 8 (SAM-P8) Mice. Med Sci Monit 2019; 25:4082-4093. [PMID: 31152645 PMCID: PMC6559003 DOI: 10.12659/msm.913858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-associated neurodegenerative disorder. This study aimed to investigate effects of acupuncture administration on cognitive function and associated mechanisms. MATERIAL AND METHODS Senescence-accelerated prone 8 (SAM-P8) mice were randomly divided into 3 groups: the SAM-P8 group (P8-CN), the SAM-P8 administrating with acupuncture (P8-Acup) group, and the SAM-P8 administrating without acupuncture (P8-Sham) group. Morris water maze test was conducted to evaluate cognitive functions (memory and learning ability). PDK1, nPKC, and Rac1 inhibitors were used to treat SAM-P8 mice. Transmission electron microscope analysis was used to examine nuclear damage hippocampal tissues. Hematoxylin and eosin (H&E) staining was employed to evaluate inflammation. Western blot was used to detect PI3K, PDK1, nPKC, and Rac 1 expression in hippocampal tissues. RESULTS Acupuncture administration significantly reduced PI3K, PDK1, nPKC, and Rac 1 levels compared to P8-CN group (P<0.05). Both acupuncture and enzyme inhibitors (NSC23766, Rottlerin, OSU03012) significantly improved cognitive functions, reduced inflammation, and alleviated nuclear damages of SAM-P8 mice compared to P8-CN group (P<0.05). Acupuncture significantly enhanced effects of inhibitors on inflammation and nuclear damages compared to inhibitor treatment single (P<0.05). Acupuncture significantly enhanced down-regulative effects of OSU03012 on PI3K and PDK1 levels, increased down-regulative effects of Rottlerin on nPKC and Rac 1 levels and enhanced effects of Rottlerin on Rac 1 compared to P8-CN group (P<0.05). CONCLUSIONS Acupuncture administration improved cognitive functions and alleviated inflammatory response and nuclear damage of SAM-P8 mice, by downregulating PI3K/PDK1/nPKC/Rac 1 signaling pathway. This study could provide potential insight for treating cognitive dysfunction and aging of AD patients.
Collapse
Affiliation(s)
- Guomin Li
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| | - Lirong Zeng
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| | - Haiyan Cheng
- Department of Traditional Chinese Medicine, Hubei Jianghan Oilfield General Hospital, Jianghan, Hubei, China (mainland)
| | - Jingxian Han
- Acupuncture and Moxibustion Research Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Xuezhu Zhang
- Acupuncture and Moxibustion Research Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Hui Xie
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| |
Collapse
|
14
|
Fišar Z, Jirák R, Zvěřová M, Setnička V, Habartová L, Hroudová J, Vaníčková Z, Raboch J. Plasma amyloid beta levels and platelet mitochondrial respiration in patients with Alzheimer's disease. Clin Biochem 2019; 72:71-80. [PMID: 30954436 DOI: 10.1016/j.clinbiochem.2019.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Altered amyloid metabolism and mitochondrial dysfunction play key roles in the development of Alzheimer's disease (AD). We asked whether an association exists between disturbed platelet mitochondrial respiration and the plasma concentrations of Aβ40 and Aβ42 in patients with AD. DESIGN AND METHODS Plasma Aβ40 and Aβ42 concentrations and mitochondrial respiration in intact and permeabilized platelets were measured in 50 patients with AD, 15 patients with vascular dementia and 25 control subjects. A pilot longitudinal study was performed to monitor the progression of AD in a subgroup 11 patients with AD. RESULTS The mean Aβ40, Aβ42 and Aβ42/Aβ40 levels were not significantly altered in patients with AD compared with controls. The mitochondrial respiratory rate in intact platelets was significantly reduced in patients with AD compared to controls, particularly the basal respiratory rate, maximum respiratory capacity, and respiratory reserve; however, the flux control ratio for basal respiration was increased. A correlation between the plasma Aβ42 concentration and mitochondrial respiration in both intact and permeabilized platelets differs in controls and patients with AD. CONCLUSIONS Based on our data, (1) mitochondrial respiration in intact platelets, but not the Aβ level itself, may be included in a panel of biomarkers for AD; (2) dysfunctional mitochondrial respiration in platelets is not explained by changes in plasma Aβ concentrations; and (3) the association between mitochondrial respiration in platelets and plasma Aβ levels differs in patients with AD and controls. The results supported the hypothesis that mitochondrial dysfunction is the primary factor contributing to the development of AD.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| | - Lucie Habartová
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Zdislava Vaníčková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| |
Collapse
|