1
|
Topka S, Steinsnyder Z, Ravichandran V, Tkachuk K, Kemel Y, Bandlamudi C, Winkel Madsen M, Furberg H, Ouerfelli O, Rudin CM, Iyer G, Lipkin SM, Mukherjee S, Solit DB, Berger MF, Bajorin DF, Rosenberg JE, Taylor BS, de Stanchina E, Vijai J, Offit K. Targeting Germline- and Tumor-Associated Nucleotide Excision Repair Defects in Cancer. Clin Cancer Res 2021; 27:1997-2010. [PMID: 33199492 DOI: 10.1158/1078-0432.ccr-20-3322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Nucleotide excision repair (NER) gene alterations constitute potential cancer therapeutic targets. We explored the prevalence of NER gene alterations across cancers and putative therapeutic strategies targeting these vulnerabilities. EXPERIMENTAL DESIGN We interrogated our institutional dataset with mutational data from more than 40,000 patients with cancer to assess the frequency of putative deleterious alterations in four key NER genes. Gene-edited isogenic pairs of wild-type and mutant ERCC2 or ERCC3 cell lines were created and used to assess response to several candidate drugs. RESULTS We found that putative damaging germline and somatic alterations in NER genes were present with frequencies up to 10% across multiple cancer types. Both in vitro and in vivo studies showed significantly enhanced sensitivity to the sesquiterpene irofulven in cells harboring specific clinically observed heterozygous mutations in ERCC2 or ERCC3. Sensitivity of NER mutants to irofulven was greater than to a current standard-of-care agent, cisplatin. Hypomorphic ERCC2/3-mutant cells had impaired ability to repair irofulven-induced DNA damage. Transcriptomic profiling of tumor tissues suggested codependencies between DNA repair pathways, indicating a potential benefit of combination therapies, which were confirmed by in vitro studies. CONCLUSIONS These findings provide novel insights into a synthetic lethal relationship between clinically observed NER gene deficiencies and sensitivity to irofulven and its potential synergistic combination with other drugs.See related commentary by Jiang and Greenberg, p. 1833.
Collapse
Affiliation(s)
- Sabine Topka
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zoe Steinsnyder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vignesh Ravichandran
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kaitlyn Tkachuk
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York
| | - Yelena Kemel
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Helena Furberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ouathek Ouerfelli
- Chemical Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dean F Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Barry S Taylor
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York.,Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York.,Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|