Chang H, Zheng J, Ju J, Huang S, Yang X, Tian R, Liu Z, Liu G, Qin X. Amplitude-integrated electroencephalography improves the predictive ability of acute bilirubin encephalopathy.
Transl Pediatr 2021;
10:647-656. [PMID:
33880334 PMCID:
PMC8041610 DOI:
10.21037/tp-21-35]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND
To establish a clinical prediction model of acute bilirubin encephalopathy (ABE) using amplitude-integrated electroencephalography (aEEG).
METHODS
A total of 114 neonatal hyperbilirubinemia patients in the Beijing Chaoyang Hospital from August 2015 to October 2018 were enrolled in this study. There were 62 (54.38%) males, and the age of patients undergoing aEEG examination was 2-23 days, with an average of 7.61±4.08 days. Participant clinical information, peak bilirubin value, albumin value, hyperbilirubinemia, and the graphic indicators of aEEG were extracted from medical records, and ABE was diagnosed according to a bilirubin-induced neurological dysfunction (BIND) score >0. Multivariable logistic regression was used to establish a clinical prediction model of ABE. Furthermore, decision curve analysis (DCA) was performed to evaluate the model's predictive value.
RESULTS
According to the BIND score, there were a total of 23 (20.18%) ABE cases. The multivariable logistic regression analysis showed that the value of bilirubin/albumin (B/A), presence of hyperbilirubinemia risk factors, number of sleep-wake cycling (SWC) within 3 hours, widest bandwidth, duration of SWC, and type of SWC were significantly associated with ABE. A clinical prediction model was developed as: p=ex/ (1+ex), X=0.278+0.713*B/A+2.602*with risk factors (with risk factors equals 1) - 1.500*SWC number within 3 hours + 0.219*the widest bandwidth-0.065*the duration of one SWC + 1.491* SWC (mature SWC equals 0, immature SWC equals 1). The area under the curve (AUC) was 0.85 [95% confidence interval (CI): 0.75-0.94], which was significantly higher than the AUC only based on conventional clinical information of B/A (AUC: 0.58, 95% CI: 0.45-0.72). The DCA also showed good predictive ability compared to B/A.
CONCLUSIONS
A clinical prediction model can be established based on the patients' B/A, presence of risk factors for hyperbilirubinemia, number of SWC within 3 hours, widest bandwidth, duration of 1 SWC, and the type of SWC. It has good predictive ability and may improve the diagnostic accuracy of ABE.
Collapse