1
|
Wu Y, Mohd Sani SB, Peng K, Lin T, Tan C, Huang X, Li Z. Research progress of the Otubains subfamily in hepatocellular carcinoma. Biomed Pharmacother 2024; 179:117348. [PMID: 39208669 DOI: 10.1016/j.biopha.2024.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
In cancer research, oncogenesis can be affected by modulating the deubiquitination pathway. Ubiquitination regulates proteins post-translationally in variety of physiological processes. The Otubain Subfamily includes OTUB1 (ovarian tumor-associated proteinase B1) and OTUB2(ovarian tumor-associated proteinase B2). They are deubiquitinating enzymes, which are research hotspots in tumor immunotherapy, with their implications extending across the spectrum of tumor development. Understanding their important role in tumorigenesis, includ-ing hepatocellular carcinoma (HCC) is crucial. HCC has alarming global incidence rates and mortality statistics, ranking among the top five prevalent cancers in Malaysia1. Numerous studies have consistently indicated significant expression of OTUB1 and OTUB2 in HCC cells. In addition, OTUB1 has important biological functions in cancer, suggesting its important role in tumorigenesis. However, the mechanism underlying the action of OTUB1 and OTUB2 in liver cancer remains inadequately explored. Therefore, Otubain Subfamily, as potential molecular target, holds promise for advancing HCC treatments. However, further clinical studies are required to verify its efficacy and application prospects.
Collapse
Affiliation(s)
- Yanming Wu
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Sa'udah Badriah Mohd Sani
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Ke Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| | - Tao Lin
- Department of General Surgery, Anyang People's Hospital, Anyang, Henan 450000, China.
| | - Chenghao Tan
- Department of Social Science, Universiti Sain Malaysia, Gelugor, Penang 11700, Malaysia.
| | | | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
2
|
Futran AS, Lu T, Amberg-Johnson K, Xu J, Yang X, He S, Boyce S, Bell JA, Pelletier R, Suzuki T, Huang X, Qian H, Fang L, Xing L, Xu Z, Kurtz SE, Tyner JW, Tang W, Guo T, Akinsanya K, Madge D, Jensen KK. Ubiquitin-specific protease 7 inhibitors reveal a differentiated mechanism of p53-driven anti-cancer activity. iScience 2024; 27:109693. [PMID: 38689642 PMCID: PMC11059122 DOI: 10.1016/j.isci.2024.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
The USP7 deubiquitinase regulates proteins involved in the cell cycle, DNA repair, and epigenetics and has been implicated in cancer progression. USP7 inhibition has been pursued for the development of anti-cancer therapies. Here, we describe the discovery of potent and specific USP7 inhibitors exemplified by FX1-5303. FX1-5303 was used as a chemical probe to study the USP7-mediated regulation of p53 signaling in cells. It demonstrates mechanistic differences compared to MDM2 antagonists, a related class of anti-tumor agents that act along the same pathway. FX1-5303 synergizes with the clinically approved BCL2 inhibitor venetoclax in acute myeloid leukemia (AML) cell lines and ex vivo patient samples and leads to strong tumor growth inhibition in in vivo mouse xenograft models of multiple myeloma and AML. This work introduces new USP7 inhibitors, differentiates their mechanism of action from MDM2 inhibition, and identifies specific opportunities for their use in the treatment of AML.
Collapse
Affiliation(s)
- Alan S. Futran
- Schrödinger, 1540 Broadway 24th Floor, New York, NY, USA
| | - Tao Lu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Jiayi Xu
- Schrödinger, 1540 Broadway 24th Floor, New York, NY, USA
| | - Xiaoxiao Yang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Saidi He
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Sarah Boyce
- Schrödinger, 1540 Broadway 24th Floor, New York, NY, USA
| | | | | | - Takao Suzuki
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xianhai Huang
- Schrödinger, 1540 Broadway 24th Floor, New York, NY, USA
| | - Heng Qian
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Liping Fang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Li Xing
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhaowu Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Stephen E. Kurtz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Wayne Tang
- Schrödinger, 1540 Broadway 24th Floor, New York, NY, USA
| | - Tao Guo
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - David Madge
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | |
Collapse
|
3
|
Vogt M, Classen S, Krause AK, Peter NJ, Petersen C, Rothkamm K, Borgmann K, Meyer F. USP7 Deregulation Impairs S Phase Specific DNA Repair after Irradiation in Breast Cancer Cells. Biomedicines 2024; 12:762. [PMID: 38672118 PMCID: PMC11047985 DOI: 10.3390/biomedicines12040762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The ubiquitin specific protease 7 (USP7) is a deubiquitinating enzyme with numerous substrates. Aberrant expression of USP7 is associated with tumor progression. This study aims to investigate how a deregulated USP7 expression affects chromosomal instability and prognosis of breast cancer patients in silico and radiosensitivity and DNA repair in breast cancer cells in vitro. The investigations in silico were performed using overall survival and USP7 mRNA expression data of breast cancer patients. The results showed that a high USP7 expression was associated with increased chromosomal instability and decreased overall survival. The in vitro experiments were performed in a luminal and a triple-negative breast cancer cell line. Proliferation, DNA repair, DNA replication stress, and survival after USP7 overexpression or inhibition and irradiation were analyzed. Both, USP7 inhibition and overexpression resulted in decreased cellular survival, distinct radiosensitization and an increased number of residual DNA double-strand breaks in the S phase following irradiation. RAD51 recruitment and base incorporation were decreased after USP7 inhibition plus irradiation and more single-stranded DNA was detected. The results show that deregulation of USP7 activity disrupts DNA repair in the S phase by increasing DNA replication stress and presents USP7 as a promising target to overcome the radioresistance of breast tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Felix Meyer
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumor Center—University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.V.); (S.C.); (A.K.K.); (N.-J.P.); (C.P.); (K.R.); (K.B.)
| |
Collapse
|
4
|
Ying H, Zhang B, Cao G, Wang Y, Zhang X. Role for ubiquitin-specific protease 7 (USP7) in the treatment and the immune response to hepatocellular carcinoma: potential mechanisms. Transl Cancer Res 2023; 12:3016-3033. [PMID: 38130306 PMCID: PMC10731377 DOI: 10.21037/tcr-23-153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/19/2023] [Indexed: 12/23/2023]
Abstract
Background Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that can affect or regulate a variety of cellular activities. The purpose of this study was to investigate therapeutic and immunologic effects of USP7 in hepatocellular carcinoma (HCC), and as well to evaluate potential mechanisms of action. Methods USP7-related gene expression and clinical data were obtained from The Cancer Genome Atlas (TCGA) dataset, International Cancer Genome Consortium (ICGC) dataset, and Gene Expression Omnibus (GEO) dataset. Pathways associated with USP7 were determined by gene set enrichment analysis (GSEA). The relationships among USP7, immunity, and drug therapy were also investigated and potential mechanisms of action were explored. Results TCGA database results demonstrated USP7 mRNA expression levels to be upregulated in HCC tissues. Results were validated with UALCAN, ICGC, and GSE10143 datasets, as well as immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) experiments and were consistent with TCGA database findings (all P<0.05). GSEA analysis demonstrated increased USP7 levels to be associated with CHEMOKINE, Janus kinase/signal transducer and activator of transcription (JAK-STAT), mitogen-activated protein kinase (MAPK), P53, vascular endothelial growth factor (VEGF), and wingless (WNT) signaling pathways. Based on immune correlation analysis, USP7 was dramatically associated with immune cells and immune checkpoint molecules. In terms of drug therapy, USP7 expression levels were significantly related to HCC sensitivity to ciclosporin, talazoparib, dabrafenib, trametinib, paclitaxel, sorafenib, bortezomib, sunitinib, and crizotinib. Based on these results, we mechanistically propose an association between USP7 and these four drug targets: B-Raf proto-oncogene serine/threonine protein kinase (BRAF), mitogen-activated extracellular signal-regulated kinase (MEK), DNA topoisomerase I (TOPOI), and poly ADP-ribose polymerase (PARP). Conclusions USP7 plays a therapeutic and immunological role in HCC. The four drug targets BRAF, MEK, TOPOI, and PARP are implicated in the USP7 mechanism of action.
Collapse
Affiliation(s)
- Huiwen Ying
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Nantong, China
- Department of Infectious Diseases, Xuancheng People’s Hospital, Xuancheng, China
| | - Bin Zhang
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Guilian Cao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunan Wang
- Department of Rheumatism and Immunology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xian Zhang
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Weidle UH, Nopora A. Hepatocellular Carcinoma: Up-regulated Circular RNAs Which Mediate Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2023; 20:500-521. [PMID: 37889063 PMCID: PMC10614070 DOI: 10.21873/cgp.20401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranges as number two with respect to the incidence of tumors and is associated with a dismal prognosis. The therapeutic efficacy of approved multi-tyrosine kinase inhibitors and checkpoint inhibitors is modest. Therefore, the identification of new therapeutic targets and entities is of paramount importance. We searched the literature for up-regulated circular RNAs (circRNAs) which mediate efficacy in preclinical in vivo models of HCC. Our search resulted in 14 circRNAs which up-regulate plasma membrane transmembrane receptors, while 5 circRNAs induced secreted proteins. Two circRNAs facilitated replication of Hepatitis B or C viruses. Three circRNAs up-regulated high mobility group proteins. Six circRNAs regulated components of the ubiquitin system. Seven circRNAs induced GTPases of the family of ras-associated binding proteins (RABs). Three circRNAs induced redox-related proteins, eight of them up-regulated metabolic enzymes and nine circRNAs induced signaling-related proteins. The identified circRNAs up-regulate the corresponding targets by sponging microRNAs. Identified circRNAs and their targets have to be validated by standard criteria of preclinical drug development. Identified targets can potentially be inhibited by small molecules or antibody-based moieties and circRNAs can be inhibited by small-interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) for therapeutic purposes.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
6
|
Zhao X, Wang Y, Xia H, Liu S, Huang Z, He R, Yu L, Meng N, Wang H, You J, Li J, Yam JWP, Xu Y, Cui Y. Roles and Molecular Mechanisms of Biomarkers in Hepatocellular Carcinoma with Microvascular Invasion: A Review. J Clin Transl Hepatol 2023; 11:1170-1183. [PMID: 37577231 PMCID: PMC10412705 DOI: 10.14218/jcth.2022.00013s] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) being a leading cause of cancer-related death, has high associated mortality and recurrence rates. It has been of great necessity and urgency to find effective HCC diagnosis and treatment measures. Studies have shown that microvascular invasion (MVI) is an independent risk factor for poor prognosis after hepatectomy. The abnormal expression of biomacromolecules such as circ-RNAs, lncRNAs, STIP1, and PD-L1 in HCC patients is strongly correlated with MVI. Deregulation of several markers mentioned in this review affects the proliferation, invasion, metastasis, EMT, and anti-apoptotic processes of HCC cells through multiple complex mechanisms. Therefore, these biomarkers may have an important clinical role and serve as promising interventional targets for HCC. In this review, we provide a comprehensive overview on the functions and regulatory mechanisms of MVI-related biomarkers in HCC.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yudan Wang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junqi You
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinglin Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing, Zhejiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Le Clorennec C, Lee K, Huo Y, Zage PE. USP7 Inhibition Suppresses Neuroblastoma Growth via Induction of p53-Mediated Apoptosis and EZH2 and N-Myc Downregulation. Int J Mol Sci 2023; 24:13780. [PMID: 37762082 PMCID: PMC10531325 DOI: 10.3390/ijms241813780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroblastoma (NB) is a pediatric malignancy originating from neural crest cells of the sympathetic nervous system that accounts for 15% of all pediatric cancer deaths. Despite advances in treatment, high-risk NB remains difficult to cure, highlighting the need for novel therapeutic approaches. Ubiquitin-specific protease 7 (USP7) is a deubiquitinase that plays a critical role in tumor suppression and DNA repair, and USP7 overexpression has been associated with tumor aggressiveness in a variety of tumors, including NB. Therefore, USP7 is a potential therapeutic target for NB. The tumor suppressor p53 is a known target of USP7, and therefore reactivation of the p53 pathway may be an effective therapeutic strategy for NB treatment. We hypothesized that inhibition of USP7 would be effective against NB tumor growth. Using a novel USP7 inhibitor, Almac4, we have demonstrated significant antitumor activity, with significant decreases in both cell proliferation and cell viability in TP53 wild-type NB cell lines. USP7 inhibition in NB cells activated the p53 pathway via USP7 and MDM2 degradation, leading to reduced p53 ubiquitination and increased p53 expression in all sensitive NB cells. In addition, USP7 inhibition led to decreased N-myc protein levels in both MYCN-amplified and -nonamplified NB cell lines, but no correlation was observed between MYCN amplification and treatment response. USP7 inhibition induced apoptosis in all TP53 wild-type NB cell lines. USP7 inhibition also induced EZH2 ubiquitination and degradation. Lastly, the combination of USP7 and MDM2 inhibition showed enhanced efficacy. Our data suggests that USP7 inhibition may be a promising therapeutic strategy for children with high-risk and relapsed NB.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Lee
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA
- Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter E. Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA
- Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
8
|
Corno C, D’Arcy P, Bagnoli M, Paolini B, Costantino M, Carenini N, Corna E, Alberti P, Mezzanzanica D, Colombo D, Linder S, Arrighetti N, Perego P. The deubiquitinase USP8 regulates ovarian cancer cell response to cisplatin by suppressing apoptosis. Front Cell Dev Biol 2022; 10:1055067. [PMID: 36578788 PMCID: PMC9791127 DOI: 10.3389/fcell.2022.1055067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The identification of therapeutic approaches to improve response to platinum-based therapies is an urgent need for ovarian carcinoma. Deubiquitinases are a large family of ubiquitin proteases implicated in a variety of cellular functions and may contribute to tumor aggressive features through regulation of processes such as proliferation and cell death. Among the subfamily of ubiquitin-specific peptidases, USP8 appears to be involved in modulation of cancer cell survival by still poorly understood mechanisms. Thus, we used ovarian carcinoma cells of different histotypes, including cisplatin-resistant variants with increased survival features to evaluate the efficacy of molecular targeting of USP8 as a strategy to overcome drug resistance/modulate cisplatin response. We performed biochemical analysis of USP8 activity in pairs of cisplatin-sensitive and -resistant cells and found increased USP8 activity in resistant cells. Silencing of USP8 resulted in decreased activation of receptor tyrosine kinases and increased sensitivity to cisplatin in IGROV-1/Pt1 resistant cells as shown by colony forming assay. Increased cisplatin sensitivity was associated with enhanced cisplatin-induced caspase 3/7 activation and apoptosis, a phenotype also observed in cisplatin sensitive cells. Increased apoptosis was linked to FLIPL decrease and cisplatin induction of caspase 3 in IGROV-1/Pt1 cells, cisplatin-induced claspin and survivin down-regulation in IGROV-1 cells, thereby showing a decrease of anti-apoptotic proteins. Immunohistochemical staining on 65 clinical specimens from advanced stage ovarian carcinoma indicated that 40% of tumors were USP8 positive suggesting that USP8 is an independent prognostic factor for adverse outcome when considering progression free survival as a clinical end-point. Taken together, our results support that USP8 may be of diagnostic value and may provide a therapeutic target to improve the efficacy of platinum-based therapy in ovarian carcinoma.
Collapse
Affiliation(s)
- Cristina Corno
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Padraig D’Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marina Bagnoli
- Department of Experimental Oncology, Unit of Molecular Therapies, Milan, Italy
| | - Biagio Paolini
- Pathology Unit 1, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Matteo Costantino
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Nives Carenini
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Elisabetta Corna
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Paola Alberti
- Department of Experimental Oncology, Unit of Molecular Therapies, Milan, Italy
| | - Delia Mezzanzanica
- Department of Experimental Oncology, Unit of Molecular Therapies, Milan, Italy
| | - Diego Colombo
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Arrighetti
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Paola Perego
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| |
Collapse
|
9
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
10
|
Li B, Wang B. USP7 Enables Immune Escape of Glioma Cells by Regulating PD-L1 Expression. Immunol Invest 2022; 51:1921-1937. [PMID: 35852892 DOI: 10.1080/08820139.2022.2083972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bing Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, PR China
| | - Bin Wang
- Department of Interventional Radiology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, P.R. China
| |
Collapse
|
11
|
Zhao J, Guo J, Wang Y, Ma Q, Shi Y, Cheng F, Lu Q, Fu W, Ouyang G, Zhang J, Xu Q, Hu X. Research Progress of DUB Enzyme in Hepatocellular Carcinoma. Front Oncol 2022; 12:920287. [PMID: 35875077 PMCID: PMC9303014 DOI: 10.3389/fonc.2022.920287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
According to GLOBOCAN 2021 cancer incidence and mortality statistics compiled by the International Agency for Research on Cancer, hepatocellular carcinoma (HCC) is the most common malignancy in the human liver and one of the leading causes of cancer death worldwide. Although there have been great advances in the treatment of HCC, such as regofenib, sorafenib, and lomvatinib, which have been developed and approved for the clinical treatment of advanced or metastatic HCC. However, they only prolong survival by a few months, and patients with advanced liver cancer are susceptible to tumor invasion metastasis and drug resistance. Ubiquitination modification is a type of post-translational modification of proteins. It can affect the physiological activity of cells by regulating the localization, stability and activity of proteins, such as: gene transcription, DNA damage signaling and other pathways. The reversible process of ubiquitination is called de-ubiquitination: it is the process of re-releasing ubiquitinated substrates with the participation of de-ubiquitinases (DUBs) and other active substances. There is growing evidence that many dysregulations of DUBs are associated with tumorigenesis. Although dysregulation of deuquitinase function is often found in HCC and other cancers, The mechanisms of action of many DUBs in HCC have not been elucidated. In this review, we focused on several deubiquitinases (DUBs) associated with hepatocellular carcinoma, including their structure, function, and relationship to hepatocellular carcinoma. hepatocellular carcinoma was highlighted, as well as the latest research reports. Among them, we focus on the USP family and OTU family which are more studied in the HCC. In addition, we discussed the prospects and significance of targeting DUBs as a new strategy for the treatment of hepatocellular carcinoma. It also briefly summarizes the research progress of some DUB-related small molecule inhibitors and their clinical application significance as a treatment for HCC in the future.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yanan Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Shi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | | | - Ji Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| | - Xiaoge Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| |
Collapse
|
12
|
Kisaï K, Koji S. Prognostic role of USP7 expression in cancer patients: A systematic review and meta-analysis. Pathol Res Pract 2021; 227:153621. [PMID: 34562828 DOI: 10.1016/j.prp.2021.153621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Numerous studies have examined the prognostic value of ubiquitin-specific protease 7 (USP7) in cancer, but the results remain controversial. Differences in assessment assays (mRNA/protein) used could be a potential confounding factor. Thus, we extracted studies that measured the protein expression and performed a meta-analysis to assess the prognostic role of USP7 expression in cancer and to identify clinicopathological features associated with USP7 expression. METHODS PubMed, Scopus, Web of Science Core Collection, Wiley Online Library, and Google Scholar were searched from inception to July 2020. Pooled hazard ratios were calculated to evaluate the association between USP7 expression and overall survival (OS). In addition, pooled odds ratios were calculated to identify clinicopathological features associated with USP7 expression. RESULTS Eight studies in China were included in our meta-analysis, which had a total of 1192 patients and assessed five types of cancer. The pooled results revealed that a high expression of USP7 was associated with poor OS, especially in epithelial ovarian cancer (EOC). Moreover, USP7 expression was increased in patients with tumour-node-metastasis (TNM) stages III-IV, poor pathological grade, and positive lymph node metastasis. For patients with EOC, a high USP7 expression positively correlated with lymph node metastasis. CONCLUSION A high USP7 expression may promote cancer progression and predict unfavourable prognosis of cancer patients, especially those with EOC. Our findings suggest that USP7 inhibitors might be promising therapeutics for cancer patients with such characteristics.
Collapse
Affiliation(s)
- Kenta Kisaï
- College of Creative Studies, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Shinsaku Koji
- College of Creative Studies, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
13
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
14
|
Dong X, Liu Z, Zhang E, Zhang P, Wang Y, Hang J, Li Q. USP39 promotes tumorigenesis by stabilizing and deubiquitinating SP1 protein in hepatocellular carcinoma. Cell Signal 2021; 85:110068. [PMID: 34197957 DOI: 10.1016/j.cellsig.2021.110068] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/17/2023]
Abstract
Deubiquitinating enzyme (DUB) can hydrolyze ubiquitin molecules from the protein bound with ubiquitin, and reversely regulate protein degradation. The ubiquitin-specific proteases (USP) family are cysteine proteases, which owns the largest members and diverse structure among the currently known DUB. The important roles of ubiquitin-specific peptidase39 (USP39) in cancer have been widely investigated. However, little is known about the putative de-ubiquitination function of USP39 in hepatocellular carcinoma (HCC) and the mechanisms of USP39 regulating tumor growth. Here, we used bioinformatics methods to reveal that USP39 expression is significantly upregulated in several cancer database. High expression of USP39 is correlated with poor prognosis of HCC patients. Then, we identify the specificity protein 1 (SP1), as a novel subtract of the USP39. We observe that USP39 stabilizes SP1 protein and prolongs its half-life by promoting its deubiquitylation pathway. In addition, our results show USP39 promotes cell proliferation by SP1-depenet manner in vivo and vitro. Knocking-down of USP39 promotes the cell apoptosis and arrest of the cell cycle, whereas SP1 forcefully reversed these effects. Taken together, our results suggest that USP39 participates the deubiquitylation of SP1 protein, providing new pathway for understand the upstream signaling for oncogene SP1.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zixin Liu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University (Second Military Medical University), Shanghai, China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Pingzhao Zhang
- Department of Oncology, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Yuqi Wang
- Department of Oncology, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Junjie Hang
- Department of Oncology, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China.
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
15
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Ni W, Bian S, Zhu M, Song Q, Zhang J, Xiao M, Zheng W. Identification and Validation of Ubiquitin-Specific Proteases as a Novel Prognostic Signature for Hepatocellular Carcinoma. Front Oncol 2021; 11:629327. [PMID: 33718205 PMCID: PMC7949004 DOI: 10.3389/fonc.2021.629327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/18/2021] [Indexed: 01/15/2023] Open
Abstract
Purpose Ubiquitin-specific proteases (USPs), as a sub-family of deubiquitinating enzymes (DUBs), are responsible for the elimination of ubiquitin-triggered modification. USPs are recently correlated with various malignancies. However, the expression features and clinical significance of USPs have not been systematically investigated in hepatocellular carcinoma (HCC). Methods Genomic alterations and expression profiles of USPs were investigated in CbioPortal and The Cancer Genome Atlas (TCGA) Liver hepatocellular carcinoma (LIHC) dataset. Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were conducted to establish a risk signature for HCC prognosis in TCGA LIHC cohort. Subsequently, Kaplan-Meier analysis, receiver operating characteristic (ROC) curves and univariate/multivariate analyses were performed to evaluate the prognostic significance of the risk signature in TCGA LIHC and international cancer genome consortium (ICGC) cohorts. Furthermore, we explored the alterations of the signature genes during hepatocarcinogenesis and HCC progression in GSE89377. In addition, the expression feature of USP39 was further explored in HCC tissues by performing western blotting and immunohistochemistry. Results Genomic alterations and overexpression of USPs were observed in HCC tissues. The consensus analysis indicated that the USPs-overexpressed sub-Cluster was correlated with aggressive characteristics and poor prognosis. Cox regression with LASSO algorithm identified a risk signature formed by eight USPs for HCC prognosis. High-risk group stratified by the signature score was correlated with advanced tumor stage and poor survival HCC patients in TCGA LIHC cohort. In addition, the 8-USPs based signature could also robustly predict overall survival of HCC patients in ICGC(LIRI-JP) cohort. Furthermore, gene sets enrichment analysis (GSEA) showed that the high-risk score was associated with tumor-related pathways. According to the observation in GSE89377, USP39 expression was dynamically increased with hepatocarcinogenesis and HCC progression. The overexpression of USP39 was further determined in a local HCC cohort and correlated with poor prognosis. The co-concurrence analysis suggested that USP39 might promote HCC by regulating cell-cycle- and proliferation- related genes. Conclusion The current study provided a USPs-based signature, highlighting its robust prognostic significance and targeted value for HCC treatment.
Collapse
Affiliation(s)
- Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Saiyan Bian
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengqi Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianqian Song
- Department of Radiology, Wake Forest School of Medicine, One Medical Center Boulevard, Winston-Salem, NC, United States
| | - Jianping Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Mingbing Xiao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
17
|
USP7 mediates pathological hepatic de novo lipogenesis through promoting stabilization and transcription of ZNF638. Cell Death Dis 2020; 11:843. [PMID: 33040080 PMCID: PMC7548010 DOI: 10.1038/s41419-020-03075-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
Aberrant de novo lipogenesis (DNL) results in excessive hepatic lipid accumulation and liver steatosis, the causative factors of many liver diseases, such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). However, the underlying mechanism of DNL dysregulation remains largely unknown. Ubiquitination of proteins in hepatocytes has been shown to be widely involved in lipid metabolism of liver. Here, we revealed that Ubiquitin-specific peptidase 7 (USP7), a deubiquitinase (DUB), played key roles in DNL through regulation of zinc finger protein 638 (ZNF638) in hepatocytes. USP7 has been shown not only to interact with and deubiquitylate ZNF638, but also to facilitate the transcription of ZNF638 via the stabilization of cAMP responsive element binding protein (CREB). USP7/ZNF638 axis selectively increased the cleavage of sterol regulatory element binding protein (SREBP1C) through AKT/mTORC1/S6K signaling, and formed USP7/ZNF638/SREBP1C nuclear complex to regulate lipogenesis-associated enzymes, including acetyl-CoA carboxylase (ACACA), fatty acid synthase (FASN), and Stearoyl-CoA desaturase (SCD). In the mice liver steatosis model induced by fructose, USP7 or ZNF638 abrogation significantly ameliorated disease progression. Furthermore, USP7/ZNF638 axis participated in the progression of lipogenesis-associated HCC. Our results have uncovered a novel mechanism of hepatic DNL, which might be beneficial to the development of new therapeutic targets for hepatic lipogenesis-associated diseases.
Collapse
|
18
|
Wilkinson NA, Mnuskin KS, Ashton NW, Woodgate R. Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass. Cancers (Basel) 2020; 12:cancers12102848. [PMID: 33023096 PMCID: PMC7600381 DOI: 10.3390/cancers12102848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Ubiquitin and ubiquitin-like proteins are conjugated to many other proteins within the cell, to regulate their stability, localization, and activity. These modifications are essential for normal cellular function and the disruption of these processes contributes to numerous cancer types. In this review, we discuss how ubiquitin and ubiquitin-like proteins regulate the specialized replication pathways of DNA damage bypass, as well as how the disruption of these processes can contribute to cancer development. We also discuss how cancer cell survival relies on DNA damage bypass, and how targeting the regulation of these pathways by ubiquitin and ubiquitin-like proteins might be an effective strategy in anti-cancer therapies. Abstract Many endogenous and exogenous factors can induce genomic instability in human cells, in the form of DNA damage and mutations, that predispose them to cancer development. Normal cells rely on DNA damage bypass pathways such as translesion synthesis (TLS) and template switching (TS) to replicate past lesions that might otherwise result in prolonged replication stress and lethal double-strand breaks (DSBs). However, due to the lower fidelity of the specialized polymerases involved in TLS, the activation and suppression of these pathways must be tightly regulated by post-translational modifications such as ubiquitination in order to limit the risk of mutagenesis. Many cancer cells rely on the deregulation of DNA damage bypass to promote carcinogenesis and tumor formation, often giving them heightened resistance to DNA damage from chemotherapeutic agents. In this review, we discuss the key functions of ubiquitin and ubiquitin-like proteins in regulating DNA damage bypass in human cells, and highlight ways in which these processes are both deregulated in cancer progression and might be targeted in cancer therapy.
Collapse
Affiliation(s)
| | | | - Nicholas W. Ashton
- Correspondence: (N.W.A.); (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.)
| | - Roger Woodgate
- Correspondence: (N.W.A.); (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.)
| |
Collapse
|
19
|
Zhao Y, Xue C, Xie Z, Ouyang X, Li L. Comprehensive analysis of ubiquitin-specific protease 1 reveals its importance in hepatocellular carcinoma. Cell Prolif 2020; 53:e12908. [PMID: 32951278 PMCID: PMC7574869 DOI: 10.1111/cpr.12908] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives In this study, we comprehensively analysed the role of ubiquitin‐specific protease 1(USP1) in hepatocellular carcinoma (HCC) using data from a set of public databases. Materials and Methods We analysed the mRNA expression of USP1 in HCC and subgroups of HCC using Oncomine and UALCAN. Survival analysis of USP1 in HCC was conducted with the Kaplan‐Meier Plotter database. The mutations of USP1 in HCC were analysed using cBioPortal and the Catalogue of Somatic Mutations in Cancer database. Differential genes correlated with USP1 and WD repeat domain 48 (WDR48) were obtained using LinkedOmics. USP1 was knocked down with small interfering RNA (siRNA) or pharmacologically inhibited by ML‐323 in MHCC97H or SK‐Hep‐1 cell lines for function analysis. Results High USP1 expression predicted unfavourable overall survival in HCC patients. USP1 showed positive correlations with the abundances of macrophages and neutrophils. We identified 98 differential genes that were positively correlated with both USP1 and WDR48. These genes were mainly involved in the cell cycle, aldosterone synthesis and secretion and oestrogen signalling pathways. Interactions between USP1 and WDR 48 were confirmed using co‐immunoprecipitation. USP1 knockdown or ML‐323 treatment reduced the expression of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E1. Conclusions Overall, USP1 is a promising target for HCC treatment with good prognostic value. USP1 and WDR48 function together in regulating cancer cell proliferation via the cell cycle.
Collapse
Affiliation(s)
- Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
20
|
The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemother Pharmacol 2020; 85:627-639. [PMID: 32146496 DOI: 10.1007/s00280-020-04046-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Drug resistance is a well-known phenomenon leading to a reduction in the effectiveness of pharmaceutical treatments. Resistance to chemotherapeutic agents can involve various intrinsic cellular processes including drug efflux, increased resistance to apoptosis, increased DNA damage repair capabilities in response to platinum salts or other DNA-damaging drugs, drug inactivation, drug target alteration, epithelial-mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic effects, or any combination of these mechanisms. Deubiquitinating enzymes (DUBs) reverse ubiquitination of target proteins, maintaining a balance between ubiquitination and deubiquitination of proteins to maintain cell homeostasis. Increasing evidence supports an association of altered DUB activity with development of several cancers. Thus, DUBs are promising candidates for targeted drug development. In this review, we outline the involvement of DUBs, particularly ubiquitin-specific proteases, and their roles in drug resistance in different types of cancer. We also review potential small molecule DUB inhibitors that can be used as drugs for cancer treatment.
Collapse
|
21
|
Mustachio LM, Roszik J, Farria A, Dent SYR. Targeting the SAGA and ATAC Transcriptional Coactivator Complexes in MYC-Driven Cancers. Cancer Res 2020; 80:1905-1911. [PMID: 32094302 DOI: 10.1158/0008-5472.can-19-3652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022]
Abstract
Targeting epigenetic regulators, such as histone-modifying enzymes, provides novel strategies for cancer therapy. The GCN5 lysine acetyltransferase (KAT) functions together with MYC both during normal development and in oncogenesis. As transcription factors, MYC family members are difficult to target with small-molecule inhibitors, but the acetyltransferase domain and the bromodomain in GCN5 might provide alternative targets for disruption of MYC-driven functions. GCN5 is part of two distinct multiprotein histone-modifying complexes, SAGA and ATAC. This review summarizes key findings on the roles of SAGA and ATAC in embryo development and in cancer to better understand the functional relationships of these complexes with MYC family members, as well as their future potential as therapeutic targets.
Collapse
Affiliation(s)
- Lisa Maria Mustachio
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aimee Farria
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sharon Y R Dent
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
22
|
Higurashi M, Maruyama T, Nogami Y, Ishikawa F, Yoshida Y, Mori K, Fujita KI, Shibanuma M. High expression of FOXM1 critical for sustaining cell proliferation in mitochondrial DNA-less liver cancer cells. Exp Cell Res 2020; 389:111889. [PMID: 32032602 DOI: 10.1016/j.yexcr.2020.111889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
The copy number of mitochondrial DNA (mtDNA) is decreased in most cancer types, including hepatocellular carcinoma (HCC), compared to normal counterparts. However, a decrease in mtDNA usually leads to defects in cell proliferation, which contradicts the robustness of cancer cell proliferation. In this study, we found that four out of seven HCC cell lines were of the mtDNA-less type. Interestingly, FOXM1, a member of the FOX transcription factor family, was highly expressed in a subset of them with proliferative potential maintained. B-MYB, a partner of FOXM1, was also expressed in the same cell lines. RNAi-mediated experiments demonstrated that when FOXM1/B-MYB was silenced in the cell lines, cell cycle-related genes were downregulated, while p21Cip1 was induced with senescence-associated β-galactosidase, resulting in G1/S cell cycle arrest. These results suggest that high expression of FOXM1/B-MYB is critical for sustaining cell proliferation in mtDNA-less cells. In addition, we found that high expression of FOXM1 was mediated by the deubiquitinating enzyme, OTUB1, in one cell line. Thus, interference with FOXM1/B-MYB expression, such as through OTUB1 inhibition, may induce a dormant state of senescence-like proliferation arrest in mtDNA-less cancer cells. This finding may be utilized for the development of precision medicine for relevant cancers.
Collapse
Affiliation(s)
- Masato Higurashi
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Tsuyoshi Maruyama
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Yusuke Nogami
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Yukiko Yoshida
- Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Ken-Ichi Fujita
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan.
| |
Collapse
|
23
|
Zhang W, Zhang J, Xu C, Zhang S, Bian S, Jiang F, Ni W, Qu L, Lu C, Ni R, Fan Y, Xiao M, Liu J. Ubiquitin-specific protease 7 is a drug-able target that promotes hepatocellular carcinoma and chemoresistance. Cancer Cell Int 2020; 20:28. [PMID: 32002017 PMCID: PMC6986148 DOI: 10.1186/s12935-020-1109-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background Ubiquitin-specific protease 7 (USP7) is a de-ubiquitin enzyme that plays an essential role in multiple cancers and becomes a target for treatment. However, the role of USP7 and its therapeutic value for HCC remains unclear. Methods USP7 expression was examined in HCC tissues by western blot and immunohistochemistry. The correlation of USP7 and HCC prognosis was analyzed by Kaplan–Meier survival method. Mass spectrometry was determined and cell proliferation and tumorigenicity assays were conducted in vitro and in vivo treated by P22077 and sgRNA-USP7. Results USP7 expression was significantly increased in HCC and associated with its progression. Interestingly, many HCC cells are sensitive to USP7 inhibition by using P22077. P22077 treatment not only induced cell death but also inhibited cell proliferation and migration in Huh7 and SK-Hep1 cells. In a xenograft model, P22077 efficiently inhibited tumor growth. In chemo-resistant HCC cells, P22077 decreased cell sensitivity to chemotherapy. In addition, mass spectrometry reveals 224 of significantly changed proteins upon P22077 treatment. Conclusions We demonstrate a critical role of USP7 in HCC devolvement and chemoresistance. Disruption of USP7 function results in dis-regulated several key biological processes and subsequently activates BAX. USP7 might be a novel and drug-able target in HCC.
Collapse
Affiliation(s)
- Wei Zhang
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China.,2Medical College, Nantong University, Nantong, 226001 China
| | - Jingxin Zhang
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China.,2Medical College, Nantong University, Nantong, 226001 China
| | - Chenzhou Xu
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China.,2Medical College, Nantong University, Nantong, 226001 China
| | - Shiqing Zhang
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China.,2Medical College, Nantong University, Nantong, 226001 China
| | - Saiyan Bian
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China.,2Medical College, Nantong University, Nantong, 226001 China
| | - Feng Jiang
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China
| | - Wenkai Ni
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China
| | - Lishuai Qu
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China
| | - Cuihua Lu
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China
| | - Runzhou Ni
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China
| | - Yihui Fan
- 3Laboratory of Medical Science, School of Medicine, Nantong University, Jiangsu, 226001 China
| | - Mingbing Xiao
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China.,4Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China
| | - Jinxia Liu
- 1Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People's Republic of China
| |
Collapse
|
24
|
Mennerich D, Kubaichuk K, Kietzmann T. DUBs, Hypoxia, and Cancer. Trends Cancer 2019; 5:632-653. [PMID: 31706510 DOI: 10.1016/j.trecan.2019.08.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023]
Abstract
Alterations in protein ubiquitylation and hypoxia are commonly associated with cancer. Ubiquitylation is carried out by three sequentially acting ubiquitylating enzymes and can be opposed by deubiquitinases (DUBs), which have emerged as promising drug targets. Apart from protein localization and activity, ubiquitylation regulates degradation of proteins, among them hypoxia-inducible factors (HIFs). Thereby, various E3 ubiquitin ligases and DUBs regulate HIF abundance. Conversely, several E3s and DUBs are regulated by hypoxia. While hypoxia is a powerful HIF regulator, less is known about hypoxia-regulated DUBs and their impact on HIFs. Here, we review current knowledge about the relationship of E3s, DUBs, and hypoxia signaling. We also discuss the reciprocal regulation of DUBs by hypoxia and use of DUB-specific drugs in cancer.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland; Biocenter Oulu, University of Oulu, Oulu, 90570, Finland.
| |
Collapse
|
25
|
Ding X, Tian X, Liu W, Li Z. CDHR5 inhibits proliferation of hepatocellular carcinoma and predicts clinical prognosis. Ir J Med Sci 2019; 189:439-447. [PMID: 31482521 DOI: 10.1007/s11845-019-02092-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND As one of the most prevalent malignancies, hepatocellular carcinoma (HCC) ranks the third leading cause of cancer death worldwide. Due to the lack of biomarkers for early diagnosis, the clinical outcome of HCC remains unsatisfied with the current common therapeutic approaches, including surgery and chemotherapies. Thus, sensitive biomarkers and targeted therapies are in great need. AIMS In this study, we explored and verified whether CDHR5 (cadherin-related family member 5), a cadherin family protein, could serve as the potential biomarkers for HCC in the clinic. METHODS A retrospective study which contained 154 HCC patients was performed. Chi-square was utilized to analyze the relationship between CDHR5 expression and the clinicopathological features of HCC patients. The Kaplan-Meier method and Cox regression analyses were then used to evaluate the survival of HCC patients. In addition, cell proliferation assay and colony formation assay were performed to examine the effects of CDHR5 on the progression of HepG2 and Huh7 cells. RESULTS IHC and RT-qPCR revealed that CDHR5 was downregulated in HCC tissues compared with adjacent liver tissues. In addition, CDHR5 expression was significantly correlated with tumor numbers, tumor size, and TNM stage. CDHR5 expression was then shown to be an independent risk factor for survival of HCC patients by survival analysis. In vitro experiments showed that CDHR5 suppressed the proliferation capacity of HCC cells. CONCLUSIONS Taken together, our study not only identified CDHR5 as a novel prognostic biomarker in HCC but also provided evidence that CDHR5 can inhibit HCC cell proliferation.
Collapse
Affiliation(s)
- Xue Ding
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Xiaomin Tian
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Wei Liu
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Zijia Li
- Department of Immunology and Rheumatology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
26
|
Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S. Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep 2019. [PMID: 30760385 PMCID: PMC6476481 DOI: 10.5483/bmbrep.2019.52.3.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer remains a life-threatening disease and accounts for the major mortality rates worldwide. The practice of using biomarkers for early detection, staging, and customized therapy may increase cancer patients’ survival. Deubiquitinating enzymes (DUBs) are a family of proteases that remove ubiquitin tags from proteins of interest undergoing proteasomal degradation. DUBs play several functional roles other than deubiquitination. One of the important roles of DUBs is regulation of tumor progression. Several reports have suggested that the DUB family members were highly-elevated in various cancer cells and tissues in different stages of cancer. These findings suggest that the DUBs could be used as drug targets in cancer therapeutics. In this review, we recapitulate the role of the DUB family members, including ubiquitin-specific protease, otubain protease, and important candidates from other family members. Our aim was to better understand the connection between DUB expression profiles and cancers to allow researchers to design inhibitors or gene therapies to improve diagnosis and prognosis of cancers.
Collapse
Affiliation(s)
- Naresh Poondla
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Korea
| | - Arun Pandian Chandrasekaran
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763; College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763; College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
27
|
Involvement of E3 Ligases and Deubiquitinases in the Control of HIF-α Subunit Abundance. Cells 2019; 8:cells8060598. [PMID: 31208103 PMCID: PMC6627837 DOI: 10.3390/cells8060598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin and hypoxia-inducible factor (HIF) pathways are cellular processes involved in the regulation of a variety of cellular functions. Enzymes called ubiquitin E3 ligases perform protein ubiquitylation. The action of these enzymes can be counteracted by another group of enzymes called deubiquitinases (DUBs), which remove ubiquitin from target proteins. The balanced action of these enzymes allows cells to adapt their protein content to a variety of cellular and environmental stress factors, including hypoxia. While hypoxia appears to be a powerful regulator of the ubiquitylation process, much less is known about the impact of DUBs on the HIF system and hypoxia-regulated DUBs. Moreover, hypoxia and DUBs play crucial roles in many diseases, such as cancer. Hence, DUBs are considered to be promising targets for cancer cell-specific treatment. Here, we review the current knowledge about the role DUBs play in the control of HIFs, the regulation of DUBs by hypoxia, and their implication in cancer progression.
Collapse
|
28
|
Kim SG, Seo SH, Shin JH, Yang JP, Lee SH, Shin EH. Increase in the nuclear localization of PTEN by the Toxoplasma GRA16 protein and subsequent induction of p53-dependent apoptosis and anticancer effect. J Cell Mol Med 2019; 23:3234-3245. [PMID: 30834688 PMCID: PMC6484329 DOI: 10.1111/jcmm.14207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
This study investigated the efficacy of Toxoplasma GRA16, which binds to herpes virus‐associated ubiquitin‐specific protease (HAUSP), in anticancer treatment, and whether the expression of GRA16 in genetically modified hepatocellular carcinoma (HCC) cells (GRA16‐p53‐wild HepG2 and GRA16‐p53‐null Hep3B) regulates PTEN because alterations in phosphatase and tensin homologue (PTEN) and p53 are vital in liver carcinogenesis and the abnormal p53 gene appears in HCC. For this purpose, we established the GRA16 cell lines using the pBABE retrovirus system, assessed the detailed mechanism of PTEN regulation in vitro and established the anticancer effect in xenograft mice. Our study showed that cell proliferation, antiapoptotic factors, p‐AKT/AKT ratio, cell migration and invasive activity were decreased in GRA16‐stable HepG2 cells. Conversely, the apoptotic factors PTEN and p53 and apoptotic cells were elevated in GRA16‐stable HepG2 cells but not in Hep3B cells. The change in MDM2 was inconspicuous in both HepG2 and Hep3B; however, the PTEN level was remarkably elevated in HepG2 but not in Hep3B. HAUSP‐bound GRA16 preferentially increased p53 stabilization by the nuclear localization of PTEN rather than MDM2‐dependent mechanisms. These molecular changes appeared to correlate with the decreased tumour mass in GRA16‐stable‐HepG2 cell‐xenograft nude mice. This study establishes that GRA16 is a HAUSP inhibitor that targets the nuclear localization of PTEN and induces the anticancer effect in a p53‐dependent manner. The efficacy of GRA16 could be newly highlighted in HCC treatment in a p53‐dependent manner.
Collapse
Affiliation(s)
- Sang-Gyun Kim
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul, Republic of Korea
| | - Seung-Hwan Seo
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul, Republic of Korea
| | - Ji-Hun Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul, Republic of Korea
| | - Jung-Pyo Yang
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul, Republic of Korea
| | - Sang Hyung Lee
- Department of Neurosurgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul, Republic of Korea.,Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
29
|
Bioinformatics analysis to identify the key genes affecting the progression and prognosis of hepatocellular carcinoma. Biosci Rep 2019; 39:BSR20181845. [PMID: 30705088 PMCID: PMC6386764 DOI: 10.1042/bsr20181845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, which has poor outcome. The present study aimed to investigate the key genes implicated in the progression and prognosis of HCC. The RNA-sequencing data of HCC was extracted from The Cancer Genome Atlas (TCGA) database. Using the R package (DESeq), the differentially expressed genes (DEGs) were analyzed. Based on the Cluepedia plug-in in Cytoscape software, enrichment analysis for the protein-coding genes amongst the DEGs was conducted. Subsequently, protein–protein interaction (PPI) network was built by Cytoscape software. Using survival package, the genes that could distinguish the survival differences of the HCC samples were explored. Moreover, quantitative real-time reverse transcription-PCR (qRT-PCR) experiments were used to detect the expression of key genes. There were 2193 DEGs in HCC samples. For the protein-coding genes amongst the DEGs, multiple functional terms and pathways were enriched. In the PPI network, cyclin-dependent kinase 1 (CDK1), polo-like kinase 1 (PLK1), Fos proto-oncogene, AP-1 transcription factor subunit (FOS), serum amyloid A1 (SAA1), and lysophosphatidic acid receptor 3 (LPAR3) were hub nodes. CDK1 interacting with PLK1 and FOS, and LPAR3 interacting with FOS and SAA1 were found in the PPI network. Amongst the 40 network modules, 4 modules were with scores not less than 10. Survival analysis showed that anterior gradient 2 (AGR2) and RLN3 could differentiate the high- and low-risk groups, which were confirmed by qRT-PCR. CDK1, PLK1, FOS, SAA1, and LPAR3 might be key genes affecting the progression of HCC. Besides, AGR2 and RLN3 might be implicated in the prognosis of HCC.
Collapse
|
30
|
Guo X, Xu Y, Wang X, Lin F, Wu H, Duan J, Xiong Y, Han X, Baklaushev VP, Xiong S, Chekhonin VP, Peltzer K, Wang G, Zhang C. Advanced Hepatocellular Carcinoma with Bone Metastases: Prevalence, Associated Factors, and Survival Estimation. Med Sci Monit 2019; 25:1105-1112. [PMID: 30739123 PMCID: PMC6378855 DOI: 10.12659/msm.913470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The objective of the present research was to explore the prevalence, risk, and prognostic factors associated with bone metastases (BM) in newly diagnosed hepatocellular carcinoma (HCC) patients. Material/Methods From 36 507 HCC patients who were registered in Surveillance, Epidemiology, and End Results (SEER) database, we enrolled 1263 with BM at the initial diagnosis of HCC from 2010 to 2014. Kaplan-Meier curves and log-rank tests were used to estimate overall survival for different subgroups. Univariate and multivariate logistic and Cox regression analyses were performed to identify risk factors and independent prognostic factors for BM. Results A total of 1567 (4.29%) HCC patients were detected with BM at initial diagnosis. Male sex, unmarried status, higher T stage, lymph node involvement, intrahepatic metastases, and extrahepatic metastases (lung or brain) were positively associated with BM. The median survival of the patients was 3.00 months (95% CI: 2.77–3.24 months). Marital status and primary tumor surgery were independently associated with the better survival. Conclusions A list of factors associated with BM occurrence and the prognosis of the advanced HCC patients with BM were found. These associated factors may provide a reference for BM screening in HCC and guide prophylactic treatment in clinical settings.
Collapse
Affiliation(s)
- Xu Guo
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland).,Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Yao Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland)
| | - Xin Wang
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China (mainland)
| | - Feng Lin
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland)
| | - Haixiao Wu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland)
| | - Jincai Duan
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland)
| | - Yuqing Xiong
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland)
| | - Vladimir P Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Biomedical Agency of the Russian Federation, Moscow, Russian Federation
| | - Shunbin Xiong
- Department of Genetics, M.D. Anderson Cancer Center, The University of Texas, Texas, TX, USA
| | - Vladimir P Chekhonin
- Department of Basic and Applied Neurobiology, Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russian Federation
| | - Karl Peltzer
- Department of Research and Innovation, University of Limpopo, Turfloop, South Africa
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland)
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Moscow, Russian Federation
| |
Collapse
|
31
|
Hu T, Zhang J, Sha B, Li M, Wang L, Zhang Y, Liu X, Dong Z, Liu Z, Li P, Chen P. Targeting the overexpressed USP7 inhibits esophageal squamous cell carcinoma cell growth by inducing NOXA-mediated apoptosis. Mol Carcinog 2018; 58:42-54. [PMID: 30182448 DOI: 10.1002/mc.22905] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/13/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that deubiquitinase USP7 participates in tumor progression by various mechanisms and serves as a potential therapeutic target. However, its expression and role in esophageal cancer remains elusive; the anti-cancer effect by targeting USP7 still needs to be investigated. Here, we reported that USP7 was overexpressed in esophageal squamous cell carcinoma (ESCC) tissues compared with adjacent tissues, implying that USP7 was an attractive anticancer target of ESCC. Pharmaceutical or genetic inactivation of USP7 inhibited esophageal cancer cells growth in vitro and in vivo and induced apoptosis. Mechanistically, inhibition of USP7 accumulated poly-ubiquitinated proteins, activated endoplasmic reticulum stress, and increased expression of ATF4, which transcriptionally upregulated expression of NOXA and induced NOXA-mediated apoptosis. These results provide an evidence for clinical investigation of USP7 inhibitors for the treatment of ESCC.
Collapse
Affiliation(s)
- Tao Hu
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Jingyang Zhang
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China.,Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Beibei Sha
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Miaomiao Li
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Longhao Wang
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Yi Zhang
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Xingge Liu
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Ziming Dong
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Zhenzhen Liu
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Pei Li
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Ping Chen
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| |
Collapse
|
32
|
Zhou H, Wang SC, Ma JM, Yu LQ, Jing JS. Sperm-Associated Antigen 5 Expression Is Increased in Hepatocellular Carcinoma and Indicates Poor Prognosis. Med Sci Monit 2018; 24:6021-6028. [PMID: 30157168 PMCID: PMC6126414 DOI: 10.12659/msm.911434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Sperm-associated antigen 5 (SPAG5), a gene that encodes a mitotic spindle-associated protein, is closely related to tumor development and is involved in cell migration and proliferation. The objective of this research was to explore the clinical significance of SPAG5 expression in hepatocellular carcinoma (HCC) and the relationship between SPAG5 expression and HCC prognosis. Material/Methods Twenty pairs of fresh-frozen HCC samples and samples from 95 HCC patients in a tissue microarray were subjected to quantitative real-time reverse-transcription (qRT)-PCR and immunohistochemistry (IHC), respectively, to investigate the relationship between the expression of SPAG5 and the clinicopathological features of HCC patients. Results PCR data showed that the messenger RNA (mRNA) expression level of SPAG5 in HCC tissue specimens was higher than that in adjacent non-tumor tissue specimens (p<0.05). IHC analyses demonstrated that SPAG5 expression was significantly correlated with tumor grade (p=0.003), tumor number (p=0.009), vascular invasion (p=0.001), and TNM stage (p=0.001). Survival analysis and Kaplan-Meier curves showed that SPAG5 expression is an independent prognostic indicator for disease-free survival (p=0.017) and overall survival (p=0.016) in HCC patients. Conclusions Our results indicate that SPAG5 expression may be considered as an oncogenic biomarker and a novel predictor for HCC prognosis.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Infectious Diseases, Jurong People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Shun-Cai Wang
- Department of Infectious Diseases, Jurong People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Jiu-Ming Ma
- Department of Infectious Diseases, Jurong People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - La-Qing Yu
- Department of Infectious Diseases, Jurong People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Ji-Sheng Jing
- Department of Infectious Diseases, Jurong People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| |
Collapse
|