1
|
Liang S, Li N, Zhan J, Li Z, Tie C, Zhu Y, Guo H, Ke L, Li J, Xu Z, Zhang P, Cheng W. Magnetic resonance imaging classification in a percutaneous needle injury rat model of intervertebral disc degeneration. J Orthop Surg Res 2024; 19:632. [PMID: 39375759 PMCID: PMC11457380 DOI: 10.1186/s13018-024-05110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND During the development of disease-modifying intervertebral disc degeneration (IDD) drugs, the rat model of IDD is frequently used for disease progression assessment. The aim of this study was to describe a magnetic resonance (MRI) scoring system for the assessment of different disc conditions in puncture-induced IDD, allowing standardization and comparison of results obtained by different investigators. METHODS A total of 36 Sprague-Dawley rats were utilized in the present study. The animals were divided into two groups: a sham group and an IDD group caused by puncture. The rats in the IDD group were subsequently divided into six categories based on time frames, with five rats in each category. The sham group was divided into two sub-groups (n = 3) for 28 and 56 days, respectively. T2-weighted images of rats consecutively studied with MRI of the coccygeal discs were classified according to the time course using the corresponding histological data. Additional scoring of the micro-CT was employed to identify the progression of bone destruction of the rat model of IDD. RESULTS A comparison of the MRI results between the sham group and the IDD group revealed a significant reduction in NP height, area, T2WI value, and DHI in the latter group (P < 0.05). The micro-CT results demonstrated that following acupuncture, there was a notable decline in the BV, Tb.N, and height of the coccygeal vertebra, while the BS/BV and Tb.Sp exhibited a significant increase (P < 0.05). The histological results were analogous to the MRI results, indicating a progressive exacerbation of IDD and a corresponding increase in NP score (P < 0.05). The results of the MRI were found to be consistent with those of the micro-CT and histological analyses (P < 0.05). The results of the study demonstrate a robust correlation between MRI analysis and histological findings. Live animals are employed for MRI analysis to improve experiment comparability. The reliability of the MRI scoring system ensures assessment of disease progression in live animals, while promoting cost savings and animal welfare by avoiding the sacrifice of animals at different times. CONCLUSIONS The described scoring paradigm has quantitatively been found to differentiate IDD disease progression in an in vivo rat model. Hence, we suggest employing it to evaluate the rat IDD model and assess the effects of treatments in this model.
Collapse
Affiliation(s)
- Songlin Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Nianhu Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Jiawen Zhan
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Zhichao Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Changjun Tie
- Paul C. Lauterbur Research Center for Biomedical lmaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical lmaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Hongyan Guo
- CapitalBio Corporation, Beijing, 102206, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Zhanwang Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
- Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, Guangdong, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, Guangdong, China.
- Shandong Zhongke Advanced Technology Co., Ltd, Jinan, 250300, Shandong, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
2
|
Xu Y, Sa Y, Zhang C, Wang J, Shao Q, Liu J, Wang S, Zhou J. A preventative role of nitrate for hypoxia-induced intestinal injury. Free Radic Biol Med 2024; 213:457-469. [PMID: 38281627 DOI: 10.1016/j.freeradbiomed.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Studying effective interventions for hypoxia-induced injury is crucial, particularly in high-altitude areas. Symptoms stemming from intestinal injuries have a significant impact on the health of individuals transitioning from plains to plateau regions. This research explores the effects and mechanisms of nitrate supplementation in preventing hypoxia-induced intestinal injury. METHODS A hypoxia survival mouse model was established using 7% O2 conditions. The intervention with 4 mM sodium nitrate (NaNO3) in drinking water commenced 7 days prior to hypoxia exposure. Weight monitoring, hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and intestinal permeability assays were employed for physiological, histological, and functional analyses. Quantitative PCR (qPCR), Western blot, and immunofluorescence were utilized to analyze the levels of tight junction (TJ) proteins and hypoxia-inducible factor 1α (Hif 1α). RNA sequencing (RNA-seq) identified nitrate's target, and chromatin immunoprecipitation (ChIP) verified the transcriptional impact of Hif 1α on TJ proteins. Villin-cre mice infected with AAV9-FLEX-EGFP-Hif 1α were used for mechanism validation. RESULTS The results demonstrated that nitrate supplementation significantly alleviated small intestinal epithelial cell necrosis, intestinal permeability, disruption of TJs, and weight loss under hypoxia. Moreover, the nitrate-triggered enhancement of TJs is mediated by Hif 1α nuclear translocation and its subsequent transcriptional function. The effect of nitrate supplementation on TJs was largely attributed to the stimulation of the EGFR/PI3K/AKT/mTOR/Hif 1α signaling pathways. CONCLUSION Nitrate serves as a novel approach in preventing hypoxia-induced intestinal injury, acting through Hif 1α activation to promote the transcription of TJ proteins. Furthermore, our study provides new and compelling evidence for the protective effects of nitrate in hypoxic conditions, especially at high altitudes.
Collapse
Affiliation(s)
- Yifan Xu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Yunqiong Sa
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China
| | - Jinsong Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China; Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China; Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing China.
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China; Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
3
|
Koshkarev MA. [Sanogenetic mechanisms of cyclic local traction therapy in the treatment of neurological manifestations of degenerative diseases in the spine. (Literature review)]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:74-83. [PMID: 39487622 DOI: 10.17116/kurort202410105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
New information on the results of scientific research may change the understanding of the etiology and pathogenesis of diseases, which makes adjustments in treatment approaches. Cyclic local traction therapywas created in USA by the group of scientists for NASA (Axiom Worldwide, Tampa, FL) and approved by FDA in 2003. The year 2023 is the 20th anniversary of its successful application in practical medicine. Evaluating the effectiveness of the method, it has been shown that after undergoing treatment in patients with chronic back pain, the height of the intervertebral discs increases, pain syndrome and frequency of taking pain medications decreases, daily activity and duration of walking without pain increases. It is assumed that the treatment effect was achieved due to the «vacuum» effect, which could contribute to the regeneration of the intervertebral disc. It is also known about the possibility of intervertebral disc herniation reduction after a course of traction therapy and it was believed that this was ensured by «retraction» of the hernia back into the intervertebral space under the influence of the longitudinal ligament. However, fundamental studies of the past century and the present indicate the presence of other mechanisms affecting the structures of the vertebral motor segment, especially the processes occurring inside the intervertebral disc and contributing to the regression of the intervertebral disc herniation.
Collapse
|
4
|
Huang ZN, Wang ZY, Cheng XF, Huang ZZ, Han YL, Cui YZ, Liu B, Tian W. Melatonin alleviates oxidative stress-induced injury to nucleus pulposus-derived mesenchymal stem cells through activating PI3K/Akt pathway. J Orthop Translat 2023; 43:66-84. [PMID: 38089645 PMCID: PMC10711395 DOI: 10.1016/j.jot.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The changes in the microenvironment of degenerative intervertebral discs cause oxidative stress injury and excessive apoptosis of intervertebral disc endogenous stem cells. The purpose of this study was to explore the possible mechanism of the protective effect of melatonin on oxidative stress injury in NPMSCs induced by H2O2. METHODS The Cell Counting Kit-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of melatonin. ROS content was detected by 2'7'-dichlorofluorescin diacetate (DCFH-DA). Mitochondrial membrane potential (MMP) was detected by the JC-1assay. Transferase mediated d-UTP Nick end labeling (TUNEL) and Annexin V/PI double staining were used to determine the apoptosis rate. Additionally, apoptosis-associated proteins and PI3K/Akt signaling pathway-related proteins were evaluated by immunofluorescence, immunoblotting and PCR. ECMs were evaluated by RT‒PCR and immunofluorescence. In vivo, X-ray, Magnetic resonance imaging (MRI) and Histological analyses were used to evaluate the protective effect of melatonin. RESULTS Melatonin had an obvious protective effect on NPMSCs treated with 0-10 μM melatonin for 24 h. In addition, melatonin also had obvious protective effects on mitochondrial dysfunction, decreased membrane potential and cell senescence induced by H2O2. More importantly, melatonin could significantly reduce the apoptosis of nucleus pulposus mesenchymal stem cells induced by H2O2 by regulating the expression of apoptosis-related proteins and decreasing the rate of apoptosis. After treatment with melatonin, the PI3K/Akt pathway was significantly activated in nucleus pulposus mesenchymal stem cells, while the protective effect was significantly weakened after PI3K-IN-1 treatment. In vivo, the results of X-ray, MRI and histological analyses showed that therapy with melatonin could partially reduce the degree of intervertebral disc degeneration. CONCLUSION Our research demonstrated that melatonin can effectively alleviate the excessive apoptosis and mitochondrial dysfunction of nucleus pulposus mesenchymal stem cells induced by oxidative stress via the PI3K/Akt pathway, which provides a novel idea for the therapy of intervertebral disc degeneration. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study indicates that melatonin can effectively alleviate the excessive apoptosis and mitochondrial dysfunction of NPMSCs through activating the PI3K/Akt pathway. Melatonin might serve as a promising candidate for the prevention and treatment of Intervertebral disc degeneration disease (IVDD) in the future.
Collapse
Affiliation(s)
- Ze-Nan Huang
- Department of Orthopedics, Shandong First Medical University & Shandong Academy of Medical Science, Shandong, 200072, China
- Department of Spine Surgery, Beijing Jishuitan Hospital, The Fourth Clinical Hospital Affiliated to Peking University, No. 37 Xinjiekou East, Road, Beijing, 100035, China
| | - Ze-Yu Wang
- Department of Orthopedics, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, Jiangsu Province, China
| | - Xiao-Fei Cheng
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedics Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhao-Zhang Huang
- Taixing Medical Center, Taixing People's Hospital, Taixing, 225400, Jiangsu Province, China
| | - Yan-Ling Han
- Medical Experimental Research Center, Yangzhou University, Yangzhou, 225001, China
| | - Ya-Zhou Cui
- Department of Orthopedics, Shandong First Medical University & Shandong Academy of Medical Science, Shandong, 200072, China
| | - Bo Liu
- Department of Spine Surgery, Beijing Jishuitan Hospital, The Fourth Clinical Hospital Affiliated to Peking University, No. 37 Xinjiekou East, Road, Beijing, 100035, China
| | - Wei Tian
- Department of Spine Surgery, Beijing Jishuitan Hospital, The Fourth Clinical Hospital Affiliated to Peking University, No. 37 Xinjiekou East, Road, Beijing, 100035, China
| |
Collapse
|
5
|
Protective Effects of Growth Differentiation Factor-6 on the Intervertebral Disc: An In Vitro and In Vivo Study. Cells 2022; 11:cells11071174. [PMID: 35406739 PMCID: PMC8998060 DOI: 10.3390/cells11071174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Growth differentiation factors (GDFs) regulate homeostasis by amplifying extracellular matrix anabolism and inhibiting pro-inflammatory cytokine production in the intervertebral disc (IVD). The aim of this study was to elucidate the effects of GDF-6 on human IVD nucleus pulposus (NP) cells using a three-dimensional culturing system in vitro and on rat tail IVD tissues using a puncture model in vivo. In vitro, Western blotting showed decreased GDF-6 expression with age and degeneration severity in surgically collected human IVD tissues (n = 12). Then, in moderately degenerated human IVD NP cells treated with GDF-6 (100 ng/mL), immunofluorescence demonstrated an increased expression of matrix components including aggrecan and type II collagen. Quantitative polymerase chain reaction analysis also presented GDF-6-induced downregulation of pro-inflammatory tumor necrosis factor (TNF)-α (p = 0.014) and interleukin (IL)-6 (p = 0.016) gene expression stimulated by IL-1β (10 ng/mL). Furthermore, in the mitogen-activated protein kinase pathway, Western blotting displayed GDF-6-induced suppression of p38 phosphorylation (p = 0.041) under IL-1β stimulation. In vivo, intradiscal co-administration of GDF-6 and atelocollagen was effective in alleviating rat tail IVD annular puncture-induced radiologic height loss (p = 0.005), histomorphological degeneration (p < 0.001), matrix metabolism (aggrecan, p < 0.001; type II collagen, p = 0.001), and pro-inflammatory cytokine production (TNF-α, p < 0.001; IL-6, p < 0.001). Consequently, GDF-6 could be a therapeutic growth factor for degenerative IVD disease.
Collapse
|
6
|
1,25(OH)2D3 Mitigates Oxidative Stress-Induced Damage to Nucleus Pulposus-Derived Mesenchymal Stem Cells through PI3K/Akt Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1427110. [PMID: 35340208 PMCID: PMC8956384 DOI: 10.1155/2022/1427110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
Abstract
Intervertebral disc degeneration (IVDD) is one of the main causes of low back pain. The local environment of the degenerated intervertebral disc (IVD) increases oxidative stress and apoptosis of endogenous nucleus pulposus-derived mesenchymal stem cells (NPMSCs) and weakens its ability of endogenous repair ability in degenerated IVDs. A suitable concentration of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) has been certified to reduce oxidative stress and cell apoptosis. The current study investigated the protective effect and potential mechanism of 1,25(OH)2D3 against oxidative stress-induced damage to NPMSCs. The present results showed that 1,25(OH)2D3 showed a significant protective effect on NPMSCs at a concentration of 10−10 M for 24 h. Protective effects of 1,25(OH)2D3 were also exhibited against H2O2-induced NPMSC senescence, mitochondrial dysfunction, and reduced mitochondrial membrane potential. The Annexin V/PI apoptosis detection assay, TUNEL assay, immunofluorescence, western blot, and real-time quantitative polymerase chain reaction assay showed that pretreatment with 1,25(OH)2D3 could alleviate H2O2-induced NPMSC apoptosis, including the apoptosis rate and the expression of proapoptotic-related (Caspase-3 and Bax) and antiapoptotic-related (Bcl-2) proteins. The intracellular expression of p-Akt increased after pretreatment with 1,25(OH)2D3. However, these protective effects of 1,25(OH)2D3 were significantly decreased after the PI3K/Akt pathway was inhibited by the LY294002 treatment. In vivo, X-ray, MRI, and histological analyses showed that 1,25(OH)2D3 treatment relieved the degree of IVDD in Sprague–Dawley rat disc puncture models. In summary, 1,25(OH)2D3 efficiently attenuated oxidative stress-induced NPMSC apoptosis and mitochondrial dysfunction via PI3K/Akt pathway and is a promising candidate treatment for the repair of IVDD.
Collapse
|
7
|
Lim S, An SB, Jung M, Joshi HP, Kumar H, Kim C, Song SY, Lee J, Kang M, Han I, Kim B. Local Delivery of Senolytic Drug Inhibits Intervertebral Disc Degeneration and Restores Intervertebral Disc Structure. Adv Healthc Mater 2022; 11:e2101483. [PMID: 34699690 DOI: 10.1002/adhm.202101483] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/09/2021] [Indexed: 12/25/2022]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) is a leading cause of chronic low back pain. There is a strong clinical demand for more effective treatments for IVDD as conventional treatments provide only symptomatic relief rather than arresting IVDD progression. This study shows that senolytic therapy with local drug delivery can inhibit IVDD and restore IVD integrity. ABT263, a senolytic drug, is loaded in poly(lactic-co-glycolic acid) nanoparticles (PLGA-ABT) and intradiscally administered into injury-induced IVDD rat models. The single intradiscal injection of PLGA-ABT may enable local delivery of the drug to avascular IVD, prevention of potential systemic toxicity caused by systemic administration of senolytic drug, and morbidity caused by repetitive injections of free drug into the IVD. The strategy results in the selective elimination of senescent cells from the degenerative IVD, reduces expressions of pro-inflammatory cytokines and matrix proteases in the IVD, inhibits progression of IVDD, and even restores the IVD structure. This study demonstrates for the first time that local delivery of senolytic drug can effectively treat senescence-associated IVDD. This approach can be extended to treat other types of senescence-associated degenerative diseases.
Collapse
Affiliation(s)
- Songhyun Lim
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Seong Bae An
- Department of Neurosurgery CHA University School of Medicine CHA Bundang Medical Center, Seongnam‐si Gyeonggi‐do 13496 Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Hari Prasad Joshi
- Department of Neurosurgery CHA University School of Medicine CHA Bundang Medical Center, Seongnam‐si Gyeonggi‐do 13496 Republic of Korea
| | - Hemant Kumar
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER)‐Ahmedabad Gandhinagar Gujarat 382355 India
| | - Cheesue Kim
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Ju‐Ro Lee
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering Seoul National University Seoul 08826 Republic of Korea
| | - Inbo Han
- Department of Neurosurgery CHA University School of Medicine CHA Bundang Medical Center, Seongnam‐si Gyeonggi‐do 13496 Republic of Korea
| | - Byung‐Soo Kim
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program for Bioengineering Seoul National University Seoul 08826 Republic of Korea
- Institute of Chemical Processes Institute of Engineering Research BioMAX Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
8
|
Shi PZ, Wang JW, Wang PC, Han B, Lu XH, Ren YX, Feng XM, Cheng XF, Zhang L. Urolithin a alleviates oxidative stress-induced senescence in nucleus pulposus-derived mesenchymal stem cells through SIRT1/PGC-1α pathway. World J Stem Cells 2021; 13:1928-1946. [PMID: 35069991 PMCID: PMC8727228 DOI: 10.4252/wjsc.v13.i12.1928] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In degenerative intervertebral disc (IVD), an unfavorable IVD environment leads to increased senescence of nucleus pulposus (NP)-derived mesenchymal stem cells (NPMSCs) and the inability to complete the differentiation from NPMSCs to NP cells, leading to further aggravation of IVD degeneration (IDD). Urolithin A (UA) has been proven to have obvious effects in delaying cell senescence and resisting oxidative stress.
AIM To explore whether UA can alleviate NPMSCs senescence and to elucidate the underlying mechanism.
METHODS In vitro, we harvested NPMSCs from rat tails, and divided NPMSCs into four groups: the control group, H2O2 group, H2O2 + UA group, and H2O2 + UA + SR-18292 group. Senescence-associated β-Galactosidase (SA-β-Gal) activity, cell cycle, cell proliferation ability, and the expression of senescence-related and silent information regulator of transcription 1/PPAR gamma coactivator-1α (SIRT1/ PGC-1α) pathway-related proteins and mRNA were used to evaluate the protective effects of UA. In vivo, an animal model of IDD was constructed, and X-rays, magnetic resonance imaging, and histological analysis were used to assess whether UA could alleviate IDD in vivo.
RESULTS We found that H2O2 can cause NPMSCs senescence changes, such as cell cycle arrest, reduced cell proliferation ability, increased SA-β-Gal activity, and increased expression of senescence-related proteins and mRNA. After UA pretreatment, the abovementioned senescence indicators were significantly alleviated. To further demonstrate the mechanism of UA, we evaluated the mitochondrial membrane potential and the SIRT1/PGC-1α pathway that regulates mitochondrial function. UA protected mitochondrial function and delayed NPMSCs senescence by activating the SIRT1/PGC-1α pathway. In vivo, we found that UA treatment alleviated an animal model of IDD by assessing the disc height index, Pfirrmann grade and the histological score.
CONCLUSION In summary, UA could activate the SIRT1/PGC-1α signaling pathway to protect mitochondrial function and alleviate cell senescence and IDD in vivo and vitro.
Collapse
Affiliation(s)
- Peng-Zhi Shi
- Department of Orthopedic, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Jun-Wu Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Ping-Chuan Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Bo Han
- Department of Orthopedic, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xu-Hua Lu
- Department of Orthopedics, Changzheng Hospital of The Second Military Medical University, Shanghai 200003, China
| | - Yong-Xin Ren
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xiao-Fei Cheng
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedics Implants, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
9
|
Wang Y, Kang J, Guo X, Zhu D, Liu M, Yang L, Zhang G, Kang X. Intervertebral Disc Degeneration Models for Pathophysiology and Regenerative Therapy -Benefits and Limitations. J INVEST SURG 2021; 35:935-952. [PMID: 34309468 DOI: 10.1080/08941939.2021.1953640] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aim:This review summarized the recent intervertebral disc degeneration (IDD) models and described their advantages and potential disadvantages, aiming to provide an overview for the current condition of IDD model establishment and new ideas for new strategies development of the treatment and prevention of IDD.Methods:The database of PubMed was searched up to May 2021 with the following search terms: nucleus pulposus, annulus fibrosus, cartilage endplate, intervertebral disc(IVD), intervertebral disc degeneration, animal model, organ culture, bioreactor, inflammatory reaction, mechanical stress, pathophysiology, epidemiology. Any IDD model-related articles were collected and summarized.Results:The best IDD model should have the features of repeatability, measurability and controllability. There are a lot of aspects to be considered in the selection of animals. Mice, rats and rabbits are low-cost and easy to access. However, their IVD size and shape are more different from human anatomy than pigs, cattle, sheep and goats. Organ culture models and animal models are two options in model establishment for IDD. The IVD organ culture model can put the studying variables into the controllable system for transitional research. Unlike the animal model, the organ culture model can only be used to evaluate the short-term effects and it is not applicable in simulating the complex process of IDD. Similarly, the animal models induced by different methods also have their advantages and disadvantages. For studying the mechanism of IDD and the corresponding treatment and prevention strategies, the selection of model should be individualized based on the purpose of each study.Conclusions:Various models have different characteristics and scope of application due to their different rationales and methods of construction. Currently, there is no experimental model that can perfectly mimic the degenerative process of human IVD. Personalized selection of appropriate model based on study purpose and experimental designing can enhance the possibility to obtain reliable and real results.
Collapse
Affiliation(s)
- Yidian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Jihe Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xudong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Daxue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Mingqiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Liang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, P.R. China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu, P.R. China
| |
Collapse
|
10
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li Y, Zhang T, Tian W, Hu H, Xin Z, Ma X, Ye C, Hang K, Han X, Zhao J, Li W. Loss of TIMP3 expression induces inflammation, matrix degradation, and vascular ingrowth in nucleus pulposus: A new mechanism of intervertebral disc degeneration. FASEB J 2020; 34:5483-5498. [PMID: 32107793 DOI: 10.1096/fj.201902364rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Low back pain (LBP) is one of the most common complains in orthopedic outpatient department and intervertebral disc degeneration (IDD) is one of the most important reasons of LBP. The mechanisms of IDD contain a complex biochemical cascade which includes inflammation, vascular ingrowth, and results in degradation of matrix. In our study, we used both in vitro and in vivo models to investigate the relation between tissue inhibitor of metalloproteinase-3 (TIMP3) expression and IDD. Loss of TIMP3 expression was found in degenerative intervertebral disc (IVD), this change of expression was closely related with the dephosphorylation of smad2/3. Overexpression of TIMP3 significantly inhibited the release of TNF-α and matrix degradation induced by Lipopolysaccharide. Vascular ingrowth was also suppressed by TIMP3 in the in vitro and in vivo models. Further, animal experiments confirmed that the degeneration of IVD was reduced after overexpression of TIMP3 in nucleus pulposus. Taken together, our results indicated TIMP-3 might play an important role in the pathogenesis of IDD and therefore be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Yan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Ting Zhang
- Department of Radiotherapy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjia Tian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hejia Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Zengfeng Xin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Xiaojing Ma
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
He M, Pang J, Sun H, Zheng G, Lin Y, Ge W. Overexpression of TIMP3 inhibits discogenic pain by suppressing angiogenesis and the expression of substance P in nucleus pulposus. Mol Med Rep 2020; 21:1163-1171. [PMID: 31922222 PMCID: PMC7003021 DOI: 10.3892/mmr.2020.10922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Approximately 50% of the cases of low back pain (LBP) are attributed to discogenic origin. The causes of discogenic pain are complicated and consist of a complex biochemical cascade. Neovascularization of intervertebral discs (IVDs) is believed to be associated with discogenic pain. The anti‑angiogenesis ability of tissue inhibitor of metalloproteinase‑3 (TIMP3) has been reported in many tumors, yet whether TIMP3 is associated with neovascularization of IVDs remains unknown. In the present study, both in vitro and in vivo models were used to investigate the association between discogenic pain and TIMP3 expression in nucleus pulposus (NP). PCR results demonstrated that inflammation induced downregulation of TIMP3 expression in NP cells. By using an adenovirus system to upregulate TIMP3 expression, the effect of TIMP3 on angiogenesis was measured by endothelial cell migration and tube formation assays. The results demonstrated that overexpression of TIMP3 suppressed angiogenesis in NP without the regulation of vascular endothelial growth factor (VEGF) expression. TNF‑α converting enzyme (TACE) expression was downregulated by TIMP3, thus inhibiting the TACE‑induced activation of TNF‑α in NP cells. Immunohistochemical staining of IVDs also confirmed that TIMP3 inhibited the expression of substance P in NP. Taken together, the present results indicated the expression of TIMP3 in NP may have a key role in the development of discogenic pain.
Collapse
Affiliation(s)
- Mingwei He
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Jinlei Pang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Guanrong Zheng
- Department of Pain, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Yan Lin
- Department of Pain, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Weipeng Ge
- Department of Pain, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
13
|
Injectable Hydrogel Combined with Nucleus Pulposus-Derived Mesenchymal Stem Cells for the Treatment of Degenerative Intervertebral Disc in Rats. Stem Cells Int 2019; 2019:8496025. [PMID: 31737077 PMCID: PMC6815539 DOI: 10.1155/2019/8496025] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based tissue engineering in treating intervertebral disc (IVD) degeneration is promising. An appropriate cell scaffold can maintain the viability and function of transplanted cells. Injectable hydrogel has the potential to be an appropriate cell scaffold as it can mimic the condition of the natural extracellular matrix (ECM) of nucleus pulposus (NP) and provide binding sites for cells. This study was aimed at investigating the effect of injectable hydrogel-loaded NP-derived mesenchymal stem cells (NPMSC) for the treatment of IVD degeneration (IDD) in rats. In this study, we selected injectable 3D-RGD peptide-modified polysaccharide hydrogel as a cell transplantation scaffold. In vitro, the biocompatibility, microstructure, and induced differentiation effect on NPMSC of the hydrogel were studied. In vivo, the regenerative effect of hydrogel-loaded NPMSC on degenerated NP in a rat model was evaluated. The results showed that NPMSC was biocompatible and able to induce differentiation in hydrogel in vivo. The disc height index (almost 87%) and MRI index (3313.83 ± 227.79) of the hydrogel-loaded NPMSC group were significantly higher than those of other groups at 8 weeks after injection. Histological staining and immunofluorescence showed that the hydrogel-loaded NPMSC also partly restored the structure and ECM content of degenerated NP after 8 weeks. Moreover, the hydrogel could support long-term NPMSC survival and decrease cell apoptosis rate of the rat IVD. In conclusion, injectable hydrogel-loaded NPMSC transplantation can delay the level of IDD and promote the regeneration of the degenerative IVD in the rat model.
Collapse
|
14
|
Liu Y, Li Y, Huang ZN, Wang ZY, Nan LP, Wang F, Zhou SF, Wang JC, Feng XM, Zhang L. The effect of intervertebral disc degenerative change on biological characteristics of nucleus pulposus mesenchymal stem cell: an in vitro study in rats. Connect Tissue Res 2019; 60:376-388. [PMID: 31119993 DOI: 10.1080/03008207.2019.1570168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: To evaluate the change on biological characteristics of mesenchymal stem cell (MSC) derived from normal and degenerative intervertebral disc (IVD). Methods: MSC was isolated from normal and degenerative IVD rat model. Immunophenotype detected by flow cytometric analysis, expression of stemness genes determined by reverse-transcription polymerase chain reaction (RT-PCR) and osteogenic, adipogenic and chondrogenic differentiation were compared between MSC derived from normal IVD (N-NPMSC) and degenerative IVD (D-NPMSC). The biological characteristics including cell proliferation, colony formation, apoptosis, caspase-3 activity and mRNA and protein expressions of hypoxia inducible factor-1α (HIF-1α), glucose transporter 1 (GLUT-1), vascular endothelial growth factor (VEGF), silent information regulator protein 1 (SIRT1) and silent information regulator protein 6 (SIRT6) were compared between N-NPMSC and D-NPMSC. Results: Both of N-NPMSC and D-NPMSC highly expressed CD105, CD90 and CD73, and lower expressed CD34 and CD45. There was no significant difference in cell morphology and multipotent differentiation ability between N-NPMSC and D-NPMSC. D-NPMSC showed significantly lower expressions of stemness genes, cell proliferation and colony formation ability. D-NPMSC also exhibited increased cell apoptosis rate and caspase-3 expression, and significantly lower expressions of HIF-1α, GLUT-1, VEGF, SIRT1 and SIRT6 in mRNA and protein levels compared with N-NPMSC. Conclusions: N-NPMSC showed significantly higher proliferation rate, better colony forming and stemness maintenance ability, whereas reduced cell apoptosis rate compared with D-NPMSC. HIF-1α-mediated signal pathway may be involved in the regulation of NPMSC proliferation. These findings indicated that degenerative change of IVD should be taken into account when selecting a source of NPMSC for clinical application.
Collapse
Affiliation(s)
- Yang Liu
- a Department of Orthopedics , Dalian Medical University , Dalian , Liaoning , China
| | - Yan Li
- b Department of Internal Medicine , Dalian Medical University , Dalian , Liaoning , China
| | - Ze-Nan Huang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Ze-Yu Wang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Li-Ping Nan
- a Department of Orthopedics , Dalian Medical University , Dalian , Liaoning , China
| | - Feng Wang
- a Department of Orthopedics , Dalian Medical University , Dalian , Liaoning , China
| | - Shi-Feng Zhou
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Jing-Cheng Wang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Xin-Min Feng
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Liang Zhang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| |
Collapse
|
15
|
Yang Y, Wang X, Liu Z, Xiao X, Hu W, Sun Z. Osteogenic protein-1 attenuates nucleus pulposus cell apoptosis through activating the PI3K/Akt/mTOR pathway in a hyperosmotic culture. Biosci Rep 2018; 38:BSR20181708. [PMID: 30459239 PMCID: PMC6294645 DOI: 10.1042/bsr20181708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies have indicated that osteogenic protein-1 has protective effects on the biological functions of intervertebral disc cells. Hyperosmolarity is an important physicochemical factor within the disc nucleus pulposus (NP) region, which obviously promotes NP cell apoptosis. OBJECTIVE To study the effects of osteogenic protein-1 (OP-1) on NP cell apoptosis induced by hyperosmolarity and the potential signaling transduction pathway. METHODS Rat NP cells were cultured in a hyperosmotic medium with or without OP-1 addition for 7 days. Inhibitor 294002 and inhibitor FK-506 were used to investigate the role of the PI3K/Akt/mTOR pathway in this process. NP cell apoptosis were evaluated by cell apoptosis ratio, activity of caspase-3/9 and gene/protein expression of apoptosis-related molecules (Bax, Bcl-2, caspase-3/cleaved caspase-3 and cleaved PARP). RESULTS OP-1 addition obviously decreased cell apoptosis ratio and caspase-3/9 activity, down-regulated gene/protein expression of pro-apoptosis molecules (Bax, caspase-3/cleaved casepase-3 and cleaved PARP), up-regulated gene/protein expression of anti-apoptosis molecule (Bcl-2) in a hyperosmotic culture. Moreover, OP-1 addition significantly increased protein expression of p-Akt and p-mTOR. Further analysis showed that addition of LY294002 and FK-506 partly attenuated these protective effects of OP-1 against NP cell apoptosis and activation of the PI3K/Akt/mTOR pathway in a hyperosmotic culture. CONCLUSION OP-1 can attenuate NP cell apoptosis through activating the PI3K/Akt/mTOR pathway in a hyperosmotic culture. The present study sheds a new light on the protective role of OP-1 in regulating disc cell biology and provides some theoretical basis for the application of OP-1 in retarding/regenerating disc degeneration.
Collapse
Affiliation(s)
- Yan Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Xiyang Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Zheng Liu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Xiao Xiao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Wenkai Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Zhicheng Sun
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| |
Collapse
|