1
|
Ávalos-Navarro G, Bautista-Herrera LA, Garibaldi-Ríos AF, Ramírez-Patiño R, Gutiérrez-García M, Briseño-Álvarez P, Jave-Suárez LF, Reyes-Uribe E, Gallegos-Arreola MP. Serum α1-AT Levels and SERPINA1 Molecular Analysis in Breast Cancer: An Experimental and Computational Study. Diseases 2024; 13:1. [PMID: 39851465 PMCID: PMC11765096 DOI: 10.3390/diseases13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Breast cancer (BC) is a heterogeneous disease with multifactorial origins, including environmental, genetic, and immunological factors. Inflammatory cytokines, such as alpha 1 antitrypsin (α1-AT), are increased in BC and affect physiological and pathological conditions. This study aimed to evaluate the serum levels of α1-AT and perform a computational analysis of SERPINA1 in BC, as well as their association with molecular subtypes and clinical features. METHODS For the experimental analysis, we evaluated 255 women with BC and 53 healthy women (HW) in a cross-sectional study. Molecular subtypes were identified by immunohistochemistry and TNM was used for clinical staging. Soluble levels of α1-AT were quantified by ELISA. Computational analysis of SERPINA1 expression was performed using GEPIA and cBioPortal. RESULTS α1-AT was increased in BC women versus HW (75.8 ng/mL vs. 532.2 ng/mL). Luminal A had higher concentration (547.5 ng/mL) than Triple Negative (TN) (484.1 ng/mL), but the levels were not associated with clinical stage. The computational analysis showed that SERPINA1 is overexpressed in BC with differential expression among subtypes; its overexpression is associated with a better prognosis, longer disease-free survival, and overall survival. CONCLUSIONS α1-AT levels are increased in women with BC women compared to HW. The Luminal A subtype shows higher soluble protein levels than the TN one. Furthermore, SERPINA1 mRNA overexpression in BC is linked to a protective effect.
Collapse
Affiliation(s)
- Guadalupe Ávalos-Navarro
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (G.Á.-N.); (R.R.-P.); (E.R.-U.)
| | - Luis A. Bautista-Herrera
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico;
| | - Asbiel Felipe Garibaldi-Ríos
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico;
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada 800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| | - Ramiro Ramírez-Patiño
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (G.Á.-N.); (R.R.-P.); (E.R.-U.)
| | - Marisol Gutiérrez-García
- Licenciatura en Químico Farmacéutico Biólogo, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico;
| | - Perla Briseño-Álvarez
- Licenciatura en Químico Farmacéutico Biólogo, Centro Universitario de la Ciénega (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico;
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| | - Emmanuel Reyes-Uribe
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (G.Á.-N.); (R.R.-P.); (E.R.-U.)
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada 800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
2
|
Lei C, Li Y, Yang H, Zhang K, Lu W, Wang N, Xuan L. Unraveling breast cancer prognosis: a novel model based on coagulation-related genes. Front Mol Biosci 2024; 11:1394585. [PMID: 38751445 PMCID: PMC11094261 DOI: 10.3389/fmolb.2024.1394585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Breast cancer is highly heterogeneous, presenting challenges in prognostic assessment. Developing a universally applicable prognostic model could simplify clinical decision-making. This study aims to develop and validate a novel breast cancer prognosis model using coagulation-related genes with broad clinical applicability. Methods A total of 203 genes related to coagulation were obtained from the KEGG database, and the mRNA data of 1,099 tumor tissue samples and 572 samples of normal tissue were retrieved from the TCGA-BRCA cohort and GTEx databases. The R package "limma" was utilized to detect variations in gene expression related to coagulation between the malignancies and normal tissue. A model was constructed in the TCGA cohort through a multivariable Cox regression analysis, followed by validation using the GSE42568 dataset as the testing set. Constructing a nomogram incorporating clinical factors to enhance the predictive capacity of the model. Utilizing the ESTIMATE algorithm to investigate the immune infiltration levels in groups with deferent risk. Performing drug sensitivity analysis using the "oncoPredict" package. Results A risk model consisting of six coagulation-associated genes (SERPINA1, SERPINF2, C1S, CFB, RASGRP1, and TLN2) was created and successfully tested for validation. Identified were 6 genes that serve as protective factors in the model's development. Kaplan-Meier curves revealed a worse prognosis in the high-risk group compared to the low-risk group. The ROC analysis showed that the model accurately forecasted the overall survival (OS) of breast cancer patients at 1, 3, and 5 years. Nomogram accompanied by calibration curves can also provide better guidance for clinical decision-making. The low-risk group is more likely to respond well to immunotherapy, whereas the high-risk group may show improved responses to Gemcitabine treatment. Furthermore, individuals in distinct risk categories displayed different responses to various medications within the identical therapeutic category. Conclusion We established a breast cancer prognostic model incorporating six coagulation-associated genes and explored its clinical utility. This model offers valuable insights for clinical decision-making and drug selection in breast cancer patients, contributing to personalized and precise treatment advancements.
Collapse
Affiliation(s)
- Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Lu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
XU JINGYAO, HAO SHUANGLI, HAN KAIYUE, YANG WANXI, DENG HONG. How is the AKT/mTOR pathway involved in cell migration and invasion? BIOCELL 2023. [DOI: 10.32604/biocell.2023.026618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
4
|
Janciauskiene S, Wrenger S, Günzel S, Gründing AR, Golpon H, Welte T. Potential Roles of Acute Phase Proteins in Cancer: Why Do Cancer Cells Produce or Take Up Exogenous Acute Phase Protein Alpha1-Antitrypsin? Front Oncol 2021; 11:622076. [PMID: 33680966 PMCID: PMC7933442 DOI: 10.3389/fonc.2021.622076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
An association between acute-phase proteins (APPs) and cancer has long been established and there are numerous reports correlating altered levels and/or molecular forms of APPs with different types of cancers. Many authors have shown a positive correlation between high levels of APPs, like alpha1-antitrypsin (AAT), and unfavorable clinical outcome in cancers. Conversely, others proposed that high levels of APPs are probably just a part of nonspecific inflammatory response to cancer development. However, this might not be always true, because many cancerous cells produce or take up exogenous APPs. What is the biological significance of this and what benefit do cancer cells have from these proteins remains largely unknown. Recent data revealed that some APPs, including AAT, are able to enhance cancer cell resistance against anticancer drug-induced apoptosis and autophagy. In this review, we specifically discuss our own findings and controversies in the literature regarding the role of AAT in cancer.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Sabine Wrenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Steffen Günzel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Anna Ricarda Gründing
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Identification of potential glycoprotein biomarkers in oral squamous cell carcinoma using sweet strategies. Glycoconj J 2021; 38:1-11. [PMID: 33547992 DOI: 10.1007/s10719-021-09973-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/08/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
The prevalence of oral squamous cell carcinoma (OSCC) is high in South and Southeast Asia regions. Most OSCC patients are detected at advanced stages low 5-year survival rates. Aberrant expression of glycosylated proteins was found to be associated with malignant transformation and cancer progression. Hence, identification of cancer-associated glycoproteins could be used as potential biomarkers that are beneficial for diagnosis or clinical management of patients. This study aims to identify the differentially expressed glycoproteins using lectin-based glycoproteomics approaches. Serum samples of 40 patients with OSCC, 10 patients with oral potentially malignant disorder (OPMD), and 10 healthy individuals as control group were subjected to two-dimensional gel electrophoresis (2-DE) coupled with lectin Concanavalin A and Jacalin that specifically bind to N- and O-glycosylated proteins, respectively. Five differentially expressed N- and O-glycoproteins with various potential glycosylation sites were identified, namely N-glycosylated α1-antitrypsin (AAT), α2-HS-glycoprotein (AHSG), apolipoprotein A-I (APOA1), and haptoglobin (HP); as well as O-glycosylated AHSG and clusterin (CLU). Among them, AAT and APOA1 were further validated using enzyme-linked immunosorbent assay (ELISA) (n = 120). It was found that AAT and APOA1 are significantly upregulated in OSCC and these glycoproteins are independent risk factors of OSCC. The clinical utility of AAT and APOA1 as potential biomarkers of OSCC is needed for further evaluation.
Collapse
|
6
|
Liu Y, Huang D, Li B, Liu W, Sooranna SR, Pan X, Huang Z, Guo J. Association between α1-antitrypsin and acute coronary syndrome. Exp Ther Med 2020; 20:119. [PMID: 33005245 PMCID: PMC7523274 DOI: 10.3892/etm.2020.9247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 11/14/2022] Open
Abstract
α1-antitrypsin (AAT) is a protein released as part of the anti-inflammatory response. It regulates the activity of serine proteinases and has a crucial role in the pathogenesis of acute coronary syndrome (ACS). The present study aimed to examine its role in patients with ACS. The plasma samples of 117 patients were collected at the Cardiology Department of the Affiliated Hospital of Youjiang Medical University (Baise, China). These included 46 cases of ACS (who met the diagnostic criteria for ACS and had ≥50% luminal stenosis of any coronary vessel), 35 cases of stable angina (SA; with ≥50% luminal stenosis of any coronary vessel but in a stable condition) and 36 normal healthy controls (subjects with no luminal stenosis in their coronary arteries). Plasma AAT protein concentrations were measured by ELISA and clinical data were collected. The plasma levels of AAT protein in patients with ACS were lower than those in controls and cases of SA (P<0.05), and the levels tended to decrease with the number of coronary artery lesions involved. There were no significant associations of the expression of plasma AAT protein and the number of diseased vessels in patients or the degree of stenosis. There was no correlation between the plasma protein levels of AAT and Gensini scores of patients with ACS. In conclusion, the plasma AAT protein levels in patients with ACS may contribute to the occurrence and development of coronary artery disease.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Da Huang
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Beilin Li
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Wenjing Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Suren R Sooranna
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK
| | - Xingshou Pan
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zhaohe Huang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
7
|
Barillari G. The Impact of Matrix Metalloproteinase-9 on the Sequential Steps of the Metastatic Process. Int J Mol Sci 2020; 21:ijms21124526. [PMID: 32630531 PMCID: PMC7350258 DOI: 10.3390/ijms21124526] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
In industrialized countries, cancer is the second leading cause of death after cardiovascular disease. Most cancer patients die because of metastases, which consist of the self-transplantation of malignant cells in anatomical sites other than the one from where the tumor arose. Disseminated cancer cells retain the phenotypic features of the primary tumor, and display very poor differentiation indices and functional regulation. Upon arrival at the target organ, they replace preexisting, normal cells, thereby permanently compromising the patient's health; the metastasis can, in turn, metastasize. The spread of cancer cells implies the degradation of the extracellular matrix by a variety of enzymes, among which the matrix metalloproteinase (MMP)-9 is particularly effective. This article reviews the available published literature concerning the important role that MMP-9 has in the metastatic process. Additionally, information is provided on therapeutic approaches aimed at counteracting, or even preventing, the development of metastasis via the use of MMP-9 antagonists.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montpellier, 00133 Rome, Italy
| |
Collapse
|
8
|
Potilinski MC, Lorenc V, Perisset S, Gallo JE. Mechanisms behind Retinal Ganglion Cell Loss in Diabetes and Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21072351. [PMID: 32231131 PMCID: PMC7177797 DOI: 10.3390/ijms21072351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes produces several changes in the body triggered by high glycemia. Some of these changes include altered metabolism, structural changes in blood vessels and chronic inflammation. The eye and particularly the retinal ganglion cells (RGCs) are not spared, and the changes eventually lead to cell loss and visual function impairment. Understanding the mechanisms resulting in RGC damage and loss from diabetic retinopathy is essential to find an effective treatment. This review focuses mainly on the signaling pathways and molecules involved in RGC loss and the potential therapeutic approaches for the prevention of this cell death. Throughout the manuscript it became evident that multiple factors of different kind are responsible for RGC damage. This shows that new therapeutic agents targeting several factors at the same time are needed. Alpha-1 antitrypsin as an anti-inflammatory agent may become a suitable option for the treatment of RGC loss because of its beneficial interaction with several signaling pathways involved in RGC injury and inflammation. In conclusion, alpha-1 antitrypsin may become a potential therapeutic agent for the treatment of RGC loss and processes behind diabetic retinopathy.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Valeria Lorenc
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Sofía Perisset
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Juan Eduardo Gallo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
- Departamento de Oftalmologia, Hospital Universitario Austral, Av. Juan Perón 1500, 1629 Pilar, Buenos Aires, Argentina
- Correspondence: ; Tel.: +54-91164038725
| |
Collapse
|
9
|
Ercetin E, Richtmann S, Delgado BM, Gomez-Mariano G, Wrenger S, Korenbaum E, Liu B, DeLuca D, Kühnel MP, Jonigk D, Yuskaeva K, Warth A, Muley T, Winter H, Meister M, Welte T, Janciauskiene S, Schneider MA. Clinical Significance of SERPINA1 Gene and Its Encoded Alpha1-antitrypsin Protein in NSCLC. Cancers (Basel) 2019; 11:cancers11091306. [PMID: 31487965 PMCID: PMC6770941 DOI: 10.3390/cancers11091306] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
High expression of SERPINA1 gene encoding acute phase protein, alpha1-antitrypsin (AAT), is associated with various tumors. We sought to examine the significance of SERPINA1 and AAT protein in non-small-cell lung cancer (NSCLC) patients and NSCLC cell lines. Tumor and adjacent non-tumor lung tissues and serum samples from 351 NSCLC patients were analyzed for SERPINA1 expression and AAT protein levels. We also studied the impact of SERPINA1 expression and AAT protein on H1975 and H661 cell behavior, in vitro. Lower SERPINA1 expression in tumor but higher in adjacent non-tumor lung tissues (n = 351, p = 0.016) as well as higher serum levels of AAT protein (n = 170, p = 0.033) were associated with worse survival rates. Specifically, in NSCLC stage III patients, higher blood AAT levels (>2.66 mg/mL) correlated with a poor survival (p = 0.002). Intriguingly, levels of serum AAT do not correlate with levels of C-reactive protein, neutrophils-to-leukocyte ratio, and do not correlate with SERPINA1 expression or AAT staining in the tumor tissue. Additional experiments in vitro revealed that external AAT and/or overexpressed SERPINA1 gene significantly improve cancer cell migration, colony formation and resistance to apoptosis. SERPINA1 gene and AAT protein play an active role in the pathogenesis of lung cancer and not just reflect inflammatory reaction related to cancer development.
Collapse
Affiliation(s)
- Evrim Ercetin
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Sarah Richtmann
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| | - Beatriz Martinez Delgado
- Department of Molecular Genetics. Institute of Health Carlos III. Center for Biomedical Research in the Network of Rare Diseases (CIBERER), 28220 Majadahonda (Madrid), Spain.
| | - Gema Gomez-Mariano
- Department of Molecular Genetics. Institute of Health Carlos III. Center for Biomedical Research in the Network of Rare Diseases (CIBERER), 28220 Majadahonda (Madrid), Spain.
| | - Sabine Wrenger
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Elena Korenbaum
- Institute of Biophysical Chemistry and Anatomy, Hannover Medical School, 30625 Hannover, Germany.
| | - Bin Liu
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - David DeLuca
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Mark P Kühnel
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.
| | - Kadriya Yuskaeva
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
| | - Arne Warth
- Institute of Pathology, Heidelberg University Hospital, D-69120 Heidelberg, Germany.
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| | - Hauke Winter
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
- Department of Surgery, Thoraxklinik at Heidelberg University Hospital, D-69126 Heidelberg, Germany.
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany.
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| |
Collapse
|