1
|
Zhang YJ, Chen LY, Lin F, Zhang X, Xiang HF, Rao Q. ROS responsive nanozyme loaded with STING silencing for the treatment of sepsis-induced acute lung injury. Toxicol Appl Pharmacol 2024; 493:117155. [PMID: 39537108 DOI: 10.1016/j.taap.2024.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Acute lung injury (ALI) is a common complication of sepsis and a leading cause of mortality in septic patients. Studies indicate that STING may play a crucial role in the pathogenesis of sepsis-induced ALI by interacting with the PARP-1/NLRP3 pathway. Therefore, targeting STING inhibition has potential as a novel therapeutic strategy for ALI. However, effective inhibition remains challenging due to the widespread expression of STING across various tissues. In this study, we developed a nanozyme-based drug delivery system, DSPE-TK-mPEG-MnO2@siSTING (abbreviated as DTmM@siSTING), using DSPE-TK-mPEG-MnO2 as the carrier, and characterized it via scanning electron microscopy, dynamic light scattering, nanoparticle size analysis, and gel electrophoresis. To evaluate the therapeutic effects of DTmM@siSTING, an in vitro ALI cell model and an in vivo ALI mouse model were established, assessing the nanozyme's impact on ROS levels, inflammatory responses, and the PARP-1/NLRP3 pathway in sepsis-induced ALI. Results demonstrated that DTmM@siSTING exhibited good physiological stability. In vitro, DTmM@siSTING significantly reduced ROS levels, myeloperoxidase activity, and expression of inflammatory cytokines, while also inhibiting PARP-1/NLRP3 pathway activation. In vivo experiments further revealed that DTmM@siSTING effectively delivered siSTING to the lungs, mitigating sepsis-induced ALI and associated inflammatory responses. Additionally, DTmM@siSTING displayed excellent biocompatibility. In summary, our findings suggest that DTmM@siSTING significantly enhances the therapeutic efficacy of siSTING, alleviating ALI by inhibiting ROS production, inflammatory responses, and activation of the PARP-1/NLRP3 pathway. This novel approach presents a promising therapeutic avenue for sepsis-induced ALI.
Collapse
Affiliation(s)
- Yin-Jin Zhang
- Blood Purification Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Ling-Yang Chen
- Blood Purification Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Feng Lin
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Xia Zhang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Hai-Fei Xiang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China.
| | - Qing Rao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China.
| |
Collapse
|
2
|
Chakraborty P, Dewanjee S. Unrevealing the mechanisms behind the cardioprotective effect of wheat polyphenolics. Arch Toxicol 2024; 98:3543-3567. [PMID: 39215839 DOI: 10.1007/s00204-024-03850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases pose a major threat to both life expectancy and quality of life worldwide, and a concerning level of disease burden has been attained, particularly in middle- and low-income nations. Several drugs presently in use lead to multiple adverse events. Thus, it is urgently needed to develop safe, affordable, and effective management of cardiovascular diseases. Emerging evidence reveals a positive association between polyphenol consumption and cardioprotection. Whole wheat grain and allied products are good sources of polyphenolic compounds bearing enormous cardioprotective potential. Polyphenolic extract of the entire wheat grain contains different phenolic compounds viz. ferulic acid, caffeic acid, chlorogenic acid, p-coumaric acid, sinapic acid, syringic acid, vanillic acid, apigenin, quercetin, luteolin, etc. which exert cardioprotection by reducing oxidative stress and interfering with different toxicological processes. The antioxidant capacity has been thought to exert the cardioprotective mechanism of wheat grain polyphenolics, which predominantly suppresses oxidative stress, inflammation and fibrosis by downregulating several pathogenic signaling events. However, the combined effect of polyphenolics appears to be more prominent than that of a single molecule, which might be attained due to the synergy resulting in multimodal cardioprotective benefits from multiple phenolics. The current article covers the bioaccessibility and possible effects of wheat-derived polyphenolics in protecting against several cardiovascular disorders. This review discusses the mechanistic pharmacology of individual wheat polyphenols on the cardiovascular system. It also highlights the comparative superiority of polyphenolic extracts over a single phenolic.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Liu C, Zhang X, Yang H, Zhao M, Liu Y, Zhao R, Li Z, Sun M. PEG-modified nano liposomes co-deliver Apigenin and RAGE-siRNA to protect myocardial ischemia injury. Int J Pharm 2024; 649:123673. [PMID: 38056796 DOI: 10.1016/j.ijpharm.2023.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Ischemic heart disease (IHD) is a cardiac disorder in which myocardial damage occurs as a result of myocardial ischemia and hypoxia. Evidence suggests that oxidative stress and inflammatory responses are critical in the development of myocardial ischemia. Therefore, the combination of antioxidant and anti-inflammatory applications is an effective strategy to combat ischemic heart disease. In this paper, polyethylene glycol (PEG)-modified cationic liposomes were used as carriers to deliver apigenin (Apn) with small interfering RNA (siRNA) targeting the receptor for glycosylation end products (RAGE) (siRAGE) into cardiomyocytes to prevent myocardial ischemic injury through antioxidant and anti-inflammatory effects. Our results showed that we successfully prepared cationic PEG liposomes loaded with Apn and siRAGE (P-CLP-A/R) with normal appearance and morphology, particle size and Zeta potential, and good encapsulation rate, drug loading and in vitro release degree. In vitro, P-CLP-A/R was able to prevent oxidative stress injury in H9C2 cells, downregulate the expression of RAGE, reduce the secretion of cellular inflammatory factors and inhibit apoptosis through the RAGE/NF-κB pathway; In vivo, P-CLP-A/R was able to prevent arrhythmia and myocardial pathological injury, and reduce apoptosis and the area of necrotic myocardium in rats. In conclusion, P-CLP-A/R has a protective effect on myocardial ischemic injury and is expected to be a potential drug for the prevention of ischemic heart disease in the future.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China.
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, PR China
| | - Huiying Yang
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, Jilin 132013, PR China
| | - Yanhong Liu
- Center for Prenatal Diagnosis, Centre for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin 130061, PR China
| | - Risheng Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Ziqing Li
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| |
Collapse
|
4
|
Mechanism Repositioning Based on Integrative Pharmacology: Anti-Inflammatory Effect of Safflower in Myocardial Ischemia–Reperfusion Injury. Int J Mol Sci 2023; 24:ijms24065313. [PMID: 36982389 PMCID: PMC10048972 DOI: 10.3390/ijms24065313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Safflower (Carthamus tinctorius. L) possesses anti-tumor, anti-thrombotic, anti-oxidative, immunoregulatory, and cardio-cerebral protective effects. It is used clinically for the treatment of cardio-cerebrovascular disease in China. This study aimed to investigate the effects and mechanisms of action of safflower extract on myocardial ischemia–reperfusion (MIR) injury in a left anterior descending (LAD)-ligated model based on integrative pharmacology study and ultra-performance liquid chromatography–quadrupole time-of-flight-tandem mass spectrometer (UPLC-QTOF-MS/MS). Safflower (62.5, 125, 250 mg/kg) was administered immediately before reperfusion. Triphenyl tetrazolium chloride (TTC)/Evans blue, echocardiography, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, lactate dehydrogenase (LDH) ability, and superoxide dismutase (SOD) levels were determined after 24 h of reperfusion. Chemical components were obtained using UPLC-QTOF-MS/MS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to analyze mRNA and protein levels, respectively. Safflower dose-dependently reduced myocardial infarct size, improved cardiac function, decreased LDH levels, and increased SOD levels in C57/BL6 mice. A total of 11 key components and 31 hub targets were filtered based on the network analysis. Comprehensive analysis indicated that safflower alleviated inflammatory effects by downregulating the expression of NFκB1, IL-6, IL-1β, IL-18, TNFα, and MCP-1 and upregulating NFκBia, and markedly increased the expression of phosphorylated PI3K, AKT, PKC, and ERK/2, HIF1α, VEGFA, and BCL2, and decreased the level of BAX and phosphorylated p65. Safflower shows a significant cardioprotective effect by activating multiple inflammation-related signaling pathways, including the NFκB, HIF-1α, MAPK, TNF, and PI3K/AKT signaling pathways. These findings provide valuable insights into the clinical applications of safflower.
Collapse
|
5
|
Thomas SD, Jha NK, Jha SK, Sadek B, Ojha S. Pharmacological and Molecular Insight on the Cardioprotective Role of Apigenin. Nutrients 2023; 15:nu15020385. [PMID: 36678254 PMCID: PMC9866972 DOI: 10.3390/nu15020385] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Apigenin is a naturally occurring dietary flavonoid found abundantly in fruits and vegetables. It possesses a wide range of biological properties that exert antioxidant, anti-inflammatory, anticancer, and antibacterial effects. These effects have been reported to be beneficial in the treatment of atherosclerosis, stroke, hypertension, ischemia/reperfusion-induced myocardial injury, and diabetic cardiomyopathy, and provide protection against drug-induced cardiotoxicity. These potential therapeutic effects advocate the exploration of the cardioprotective actions of apigenin. This review focuses on apigenin, and the possible pharmacological mechanisms involved in the protection against cardiovascular diseases. We further discuss its therapeutic uses and highlight its potential applications in the treatment of various cardiovascular disorders. Apigenin displays encouraging results, which may have implications in the development of novel strategies for the treatment of cardiovascular diseases. With the commercial availability of apigenin as a dietary supplement, the outcomes of preclinical studies may provide the investigational basis for future translational strategies evaluating the potential of apigenin in the treatment of cardiovascular disorders. Further preclinical and clinical investigations are required to characterize the safety and efficacy of apigenin and establish it as a nutraceutical as well as a therapeutic agent to be used alone or as an adjuvant with current drugs.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| |
Collapse
|
6
|
Shahabi Raberi V, Esmati M, Bodagh H, Ghasemi R, Ghazal M, Matinpour A, Abbasnezhad M. The Functionality of Apigenin as a Novel Cardioprotective Nutraceutical with Emphasize on Regulating Cardiac Micro RNAs:. Galen Med J 2022; 11:e2535. [PMID: 37200687 PMCID: PMC10188251 DOI: 10.31661/gmj.v11i.2535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 09/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) are considered the most common disorder and the leading cause of mortality globally. The etiology of CVDs depends on a variety of genetic and acquired parameters. Nowadays, a dramatic surge appeared in published reports to find the association between microRNAs (miRNAs) and CVDs in order to understand the cause of the disease, rapid diagnosis with the introduction of valid biomarkers, and target as a therapeutic approach. Apigenin is a novel nutraceutical flavonoid that cardioprotective properties are suggested. The current review aimed to evaluate the beneficial features of this phytochemical against CVDs with an emphasis on its ability to regulate the miRNAs. The findings demonstrated that Apigenin could regulate cardiac miRNAs, including miR-103, miR-122-5p, miR-15b, miR-155, and miR-33. Consequently, preventing CVDs is possible through different effects such as the promotion of cholesterol efflux, prevention of hyperlipidemia, alteration in ATP Binding Cassette Subfamily A Member 1 (ABCA1) levels, reducing of cardiocytes apoptosis, and retarding myocytes fibrosis. Also, it can regulate signaling pathways, protect against endothelial dysfunction, maintain oxidative balance, and decrease inflammatory factors and reactive oxygen species. Hence, apigenin regulatory characteristics affecting miRNAs expression could introduce this flavonoid as a novel cardioprotective phytochemical against different CVDs.
Collapse
Affiliation(s)
- Venus Shahabi Raberi
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahboubeh Esmati
- School of medicine, North Khorasan University of Medical science, Bojnourd, Iran
| | - Haleh Bodagh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghasemi
- Department of Cardiology, Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran
| | - Mehrdad Ghazal
- Department of Psychiatric Nursing, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Azita Matinpour
- School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abbasnezhad
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Li Z, Zhou J, Ji L, Liang Y, Xie S. Recent Advances in the Pharmacological Actions of Apigenin, Its Complexes, and Its Derivatives. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zhuoxi Li
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Jinfeng Zhou
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Lianru Ji
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Yingye Liang
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Shaoqu Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Wu L, Li Z, Li Y. The crosstalk between STAT3 and microRNA in cardiac diseases and protection. Front Cardiovasc Med 2022; 9:986423. [PMID: 36148063 PMCID: PMC9485608 DOI: 10.3389/fcvm.2022.986423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), an important transcription factor and signaling molecule, play an important role in cardiac disease and protection. As a transcription factor, STAT3 upregulates anti-oxidative and anti-apoptotic genes but suppresses anti-inflammatory and anti-fibrotic genes in cardiac disease and protection. As a signaling molecule, STAT3 is the downstream or upstream of other molecules for signaling transduction, also activated in cardiac disease and protection. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that regulate mRNA expression at the transcriptional level and prevent protein translation. Recently, STAT3 is reported to be not only the target of miRNA but also the inhibitor or inducer of miRNA to modify the mRNA expression profiles in cardiomyocytes resulting in different effects on cardiac disease and protection. We summarize the current knowledge on STAT3 regulation of individual miRNAs and the modulation of STAT3 by miRNAs in cardiac diseases and protection.
Collapse
Affiliation(s)
- Lan Wu
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Lan Wu
| | - Zhizheng Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yanfei Li
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
9
|
Draginic N, Milosavljevic I, Andjic M, Jeremic J, Nikolic M, Sretenovic J, Kocovic A, Srejovic I, Zivkovic V, Bolevich S, Bolevich S, Curcic S, Jakovljevic V. Short-Term Administration of Lemon Balm Extract Ameliorates Myocardial Ischemia/Reperfusion Injury: Focus on Oxidative Stress. Pharmaceuticals (Basel) 2022; 15:840. [PMID: 35890139 PMCID: PMC9317599 DOI: 10.3390/ph15070840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to investigate the cardioprotective effects of ethanolic Melissa officinalis L. extract (ME) in the rat model of myocardial ischemia/reperfusion (I/R) injury. Thirty-two Wistar rats were randomly divided into a CTRL non-treated control group with myocardial I/R injury and three experimental groups of rats treated with 50, 100, or 200 mg/kg of ME for 7 days per os. Afterward, hearts were isolated, and cardiodynamic function was assessed via the Langendorff model of global 20 min ischemia and 30 min reperfusion. Oxidative stress parameters were determined spectrophotometrically from the samples of coronary venous effluent (O2-, H2O2, TBARS, and NO2-,) and heart tissue homogenate (TBARS, NO2-, SOD, and CAT). H/E and Picrosirius red staining were used to examine cardiac architecture and cardiac collagen content. ME improved cardiodynamic parameters and achieved to preserve cardiac architecture after I/R injury and to decrease fibrosis, especially in the ME200 group compared to CTRL. ME200 and ME100 markedly decreased prooxidants TBARS, O2-, and H2O2 while increasing NO2-. Hereby, we confirmed the ME`s ability to save the heart from I/R induced damage, even after short-term preconditioning in terms of preserving cardiodynamic alterations, cardiac architecture, fibrosis, and suppressing oxidative stress, especially in dose of 200 mg/kg.
Collapse
Affiliation(s)
- Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (N.D.); (M.A.); (J.J.); (A.K.)
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, 119991 Moscow, Russia;
| | - Isidora Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (N.D.); (M.A.); (J.J.); (A.K.)
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (N.D.); (M.A.); (J.J.); (A.K.)
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (N.D.); (M.A.); (J.J.); (A.K.)
| | - Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.N.); (J.S.); (I.S.); (V.Z.)
| | - Jasmina Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.N.); (J.S.); (I.S.); (V.Z.)
| | - Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (N.D.); (M.A.); (J.J.); (A.K.)
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.N.); (J.S.); (I.S.); (V.Z.)
- Department of Pharmacology of the Institute of Biodesign and Complex System Modelling, First Moscow State Medical University I.M. Sechenov, 119991 Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.N.); (J.S.); (I.S.); (V.Z.)
- Department of Pharmacology of the Institute of Biodesign and Complex System Modelling, First Moscow State Medical University I.M. Sechenov, 119991 Moscow, Russia
| | - Sergey Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, 119991 Moscow, Russia;
| | - Stefani Bolevich
- Department of Patophysiology, First Moscow State Medical University I.M. Sechenov, 119991 Moscow, Russia;
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, 119991 Moscow, Russia
| | - Svetlana Curcic
- Faculty of Education in Jagodina, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljevic
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, 119991 Moscow, Russia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.N.); (J.S.); (I.S.); (V.Z.)
| |
Collapse
|
10
|
Lashgari NA, Roudsari NM, Momtaz S, Sathyapalan T, Abdolghaffari AH, Sahebkar A. The involvement of JAK/STAT signaling pathway in the treatment of Parkinson's disease. J Neuroimmunol 2021; 361:577758. [PMID: 34739911 DOI: 10.1016/j.jneuroim.2021.577758] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder in which inflammation and oxidative stress play key etiopathological role. The pathology of PD brain is characterized by inclusions of aggregated α-synuclein (α-SYN) in the cytoplasmic region of neurons. Clinical evidence suggests that stimulation of pro-inflammatory cytokines leads to neuroinflammation in the affected brain regions. Upon neuroinflammation, the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway, and other transcription factors such as nuclear factor κB (NF-κB), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), mammalian target of rapamycin (mTOR), and toll-like receptors (TLRs) are upregulated and induce the microglial activation, contributing to PD via dopaminergic neuron autophagy. Aberrant activation or phosphorylation of the components of JAK/STAT signaling pathway has been implicated in increased transcription of the inflammation-associated genes and many neurodegenerative disorders such as PD. Interferon gamma (IFN-γ), and interleukine (IL)-6 are two of the most potent activators of the JAK/STAT pathway, and it was shown to be elevated in PD. Stimulation of microglial cell with aggregated α-SYN results in production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and IL-1β in PD. Dysregulation of the JAK/STAT in PD and its involvement in various inflammatory pathways make it a promising PD therapy approach. So far, a variety of synthetic or natural small-molecule JAK inhibitors (Jakinibs) have been found promising in managing a spectrum of ailments, many of which are in preclinical research or clinical trials. Herein, we provided a perspective on the function of the JAK/STAT signaling pathway in PD progression and gathered data that describe the rationale evidence on the potential application of Jakinibs to improve neuroinflammation in PD.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir Hossein Abdolghaffari
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
12
|
Li F, Zhan Z, Qian J, Cao C, Yao W, Wang N. Naringin attenuates rat myocardial ischemia/reperfusion injury via PI3K/Akt pathway-mediated inhibition of apoptosis, oxidative stress and autophagy. Exp Ther Med 2021; 22:811. [PMID: 34131434 PMCID: PMC8193209 DOI: 10.3892/etm.2021.10243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Naringin (NRG) has been reported to exert cardioprotective effects against multiple cardiovascular diseases, including lipopolysaccharide-induced and hyperglycemia-induced myocardial injury. However, the role of NRG in myocardial ischemia/reperfusion (I/R) injury remains unclear. In the present study, the PI3K/Akt pathway was investigated to evaluate the possible mechanisms underlying the roles of NRG in myocardial ischemia/reperfusion (I/R) injury. The levels of cardiac enzymes were measured by ELISA to evaluate the optimal dosage of NRG that could protect against myocardial I/R injury. Rats were administered 100 mg/kg of NRG and activities of myocardial enzymes, the level of cardiac apoptosis and inflammation, oxidant response, autophagy indicators and echocardiography were evaluated. The level of corresponding proteins was measured using western blotting. The results indicated that NRG elicited the best cardioprotective effects at a dose of 100 mg/kg by significantly reducing the levels of myocardial enzymes, apoptosis, inflammation, oxidative response and infarct size. Furthermore, NRG alleviated contractile dysfunction by increasing the left ventricular ejection fraction and fractional shortening. In addition, NRG markedly promoted the phosphorylation of Akt, while decreasing the level of autophagy indicator beclin-1 and the microtubule-associated protein 1B-light chain 3 (LC3B) II/ LC3BI ratio. However, PI3K/Akt inhibitor (LY294002) partially reduced the NRG induced phosphorylation of Akt and the reduction in beclin-1, along with the LC3BII/LC3BI ratio. The results of the present study demonstrated that NRG could attenuate myocardial I/R injury.
Collapse
Affiliation(s)
- Fengwei Li
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Zhenjian Zhan
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Jin Qian
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Chuanbin Cao
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Wei Yao
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Neng Wang
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| |
Collapse
|
13
|
Lee Y, Im E. Regulation of miRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and eNOS. Antioxidants (Basel) 2021; 10:antiox10030377. [PMID: 33802566 PMCID: PMC8000568 DOI: 10.3390/antiox10030377] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortality worldwide. The potential benefits of natural antioxidants derived from supplemental nutrients against CVDs are well known. Remarkably, natural antioxidants exert cardioprotective effects by reducing oxidative stress, increasing vasodilation, and normalizing endothelial dysfunction. Recently, considerable evidence has highlighted an important role played by the synergistic interaction between endothelial nitric oxide synthase (eNOS) and sirtuin 1 (SIRT1) in the maintenance of endothelial function. To provide a new perspective on the role of natural antioxidants against CVDs, we focused on microRNAs (miRNAs), which are important posttranscriptional modulators in human diseases. Several miRNAs are regulated via the consumption of natural antioxidants and are related to the regulation of oxidative stress by targeting eNOS and/or SIRT1. In this review, we have discussed the specific molecular regulation of eNOS/SIRT1-related endothelial dysfunction and its contribution to CVD pathologies; furthermore, we selected nine different miRNAs that target the expression of eNOS and SIRT1 in CVDs. Additionally, we have summarized the alteration of miRNA expression and regulation of activities of miRNA through natural antioxidant consumption.
Collapse
Affiliation(s)
| | - Eunok Im
- Correspondence: ; Tel.: +82-51-510-2812; Fax: +82-51-513-6754
| |
Collapse
|
14
|
Cannataro R, Fazio A, La Torre C, Caroleo MC, Cione E. Polyphenols in the Mediterranean Diet: From Dietary Sources to microRNA Modulation. Antioxidants (Basel) 2021; 10:328. [PMID: 33672251 PMCID: PMC7926722 DOI: 10.3390/antiox10020328] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Abstract
It is now well established that polyphenols are a class of natural substance that offers numerous health benefits; they are present in all plants in very different quantities and types. On the other hand, their bioavailability, and efficacy is are not always well proven. Therefore, this work aims to discuss some types of polyphenols belonging to Mediterranean foods. We chose six polyphenols-(1) Naringenin, (2) Apigenin, (3) Kaempferol, (4) Hesperidin, (5) Ellagic Acid and (6) Oleuropein-present in Mediterranean foods, describing dietary source and their chemistry, as well as their pharmacokinetic profile and their use as nutraceuticals/supplements, in addition to the relevant element of their capability in modulating microRNAs expression profile.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| |
Collapse
|
15
|
Naddaf N, Haddad S. Apigenin effect against Leishmania tropica amastigotes in vitro. J Parasit Dis 2020; 44:574-578. [PMID: 32801509 PMCID: PMC7410876 DOI: 10.1007/s12639-020-01230-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/06/2020] [Indexed: 12/29/2022] Open
Abstract
Cutaneous Leishmaniasis is a current public health problem in Syria. It causes different skin lesions that vary in their severity from spontaneously heal lesions to permanent deformity ones. However, the used treatments have many disadvantages as their high toxicity and many side effects. Flavonoids including Apigenin reported to have many anti parasitic properties. As well as their preference as potential therapeutic alternatives in the treatment of Leishmaniasis due to its low side effects and toxicity. This study aims to evaluate the efficacy of Apigenin against L.tropica amastigotes in vitro using Leishmania-Macrophage Interaction Assay. Our study demonstrated the possibility of efficacy of Apigenin against L.tropica amastigotes since Apigenin reduced the infection index at IC50 60.44 µM and this requires subsequent studies in humans and using Apigenin as a candidate for the chemotherapeutic treatment against Leishmaniasis.
Collapse
Affiliation(s)
- Nagham Naddaf
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Shaden Haddad
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| |
Collapse
|
16
|
Yin Q, Zhao B, Zhu J, Fei Y, Shen W, Liang B, Zhu X, Li Y. JLX001 improves myocardial ischemia-reperfusion injury by activating Jak2-Stat3 pathway. Life Sci 2020; 257:118083. [PMID: 32673665 DOI: 10.1016/j.lfs.2020.118083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
AIMS To investigate the preclinical pharmacodynamics and mechanism of JLX001 against myocardial ischemia reperfusion (MI/R) for clinical application. MATERIALS AND METHODS In vivo, SD rats were given intragastric administration for 5 days, and the MI/R model was established by ligating/releasing the left anterior descending coronary artery. In vitro, the oxygen-glucose deprivation/reperfusion (OGD/R) model was established after the drug was pre-incubated for 24 h in H9C2 cells. The infract size was determined by TTC staining. Left ventricular function of MI/R rats was detected by echocardiography. The level of histopathological score was determined by hematoxylin-eosin (HE) staining. The level of superoxide dismutase (SOD), malondialdehyde (MDA), creatine kinase (CK), lactic dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were determined by relevant kits. The level of apoptosis was measured by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Hoechst staining. The expression of p-Jak2, p-Stat3, Bax, Bcl-2, TNF-α, IL-1β protein were determined by western blot. KEY FINDINGS JLX001 can significantly improve left ventricular function, reduce myocardial infract size, histopathological score, the level of MDA, CK, LDH, TNF-α, IL-1β and the expression of Bax protein, significantly increase the activity of SOD, Bcl-2 protein expression, p-Jak2 protein expression, p-Stat3 protein expression in rat heart tissues and H9C2 cells. These effects can be reversed by AG490 which is a specific inhibitor of Jak2-Stat3 pathway. SIGNIFICANCE JLX001 can alleviate MI/R injury by inhibiting myocardial apoptosis, inflammation, and oxidative stress via Jak2-Stat3 pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Qiyang Yin
- State key laboratory of Nature Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Zhao
- State key laboratory of Nature Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianping Zhu
- State key laboratory of Nature Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuxiang Fei
- State key laboratory of Nature Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weiyang Shen
- School of Sciences, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bingwen Liang
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR china
| | - Xiong Zhu
- School of Sciences, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yuman Li
- State key laboratory of Nature Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Phenolic Compounds Exerting Lipid-Regulatory, Anti-Inflammatory and Epigenetic Effects as Complementary Treatments in Cardiovascular Diseases. Biomolecules 2020; 10:biom10040641. [PMID: 32326376 PMCID: PMC7226566 DOI: 10.3390/biom10040641] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.
Collapse
|
18
|
Li Y, Liu X. The inhibitory role of Chinese materia medica in cardiomyocyte apoptosis and underlying molecular mechanism. Biomed Pharmacother 2019; 118:109372. [DOI: 10.1016/j.biopha.2019.109372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023] Open
|