1
|
Wang Y, Li H, Wei J, Hong K, Zhou Q, Liu X, Hong X, Li W, Liu C, Zhu X, Yu L. Multi-Effects of Acute Salinity Stress on Osmoregulation, Physiological Metabolism, Antioxidant Capacity, Immunity, and Apoptosis in Macrobrachium rosenbergii. Antioxidants (Basel) 2023; 12:1836. [PMID: 37891915 PMCID: PMC10604327 DOI: 10.3390/antiox12101836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Salinity stress can trigger a series of physiological changes. However, the mechanism underlying the response to acute salinity stress in Macrobrachium rosenbergii remains poorly understood. In this study, osmoregulation, physiological metabolism, antioxidant capacity, and apoptosis were examined over 96 h of acute salinity stress. Hemolymph osmolality increased with increasing salinity. After 48 h of salinity exposure, the glucose, triglycerides, total protein, and total cholesterol contents in two salinity stress groups (13 and 26‱ salinity) were significantly lower than those in the 0‱ salinity group. The highest levels of these parameters were detected at 6 h; however, superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) were the lowest at 96 h in the 13‱ salinity group. The activity of immunity-related enzyme alkaline phosphatase (AKP) showed a decreasing trend with increasing salinity and remained at a low level in the 26‱ salinity group throughout the experiment. No significant differences were observed in aspartate aminotransferase (AST), alanine aminotransferase (ALT), or lysozyme (LZM) among the three treatments at 96 h. After 96 h of salinity treatments, the gill filament diameter significantly decreased, and a more pronounced terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive signal was detected in the 13‱ and 26‱ groups compared to that in the 0‱ group. Expression levels of apoptosis-related genes, including Cysteine-aspartic acid protease 3 (Caspase 3), Cysteine-aspartic acid protease 8 (Caspase 8), Cytochrome c (Cyt-c), tumor suppressor gene (P53), Nuclear factor kappa-B (NF-κB), and B cell lymphoma 2 ovarian killer (Bok) were significantly higher in the 26‱ salinity group than in the other groups at 24 h, but lower than those in the 0‱ salinity group at 96 h. Cyt-c and P53 levels exhibited a significantly positive relationship with MDA, AST, and LZM activity during salinity stress. In the 13‱ salinity group, Bok expression was significantly correlated with SOD, T-AOC, AKP, acid phosphatase, and LZM activity, whereas in the 26‱ group, the AST content was positively correlated with Caspase 8, Cyt-c, and P53 expression. A significant negative relationship was observed between Caspase 3 expression and catalase (CAT) activity. These findings provide insight into the mechanisms underlying the response to acute salinity stress and will contribute to improving M. rosenbergii aquaculture and management practices.
Collapse
Affiliation(s)
- Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Huarong Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Kunhao Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Qiaoyan Zhou
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Chao Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| |
Collapse
|
2
|
Cao Y, Wang HB, Ni CJ, Chen SL, Wang WT, Wang LR. Necrostatin-1 prevents skeletal muscle ischemia reperfusion injury by regulating Bok-mediated apoptosis. J Chin Med Assoc 2023; 86:26-33. [PMID: 36599139 DOI: 10.1097/jcma.0000000000000806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Receptor interacting serine/threonine kinase 1 (RIPK1) mediates apoptosis by regulating the classic proapoptotic effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak). Although Bcl-2-related ovarian killer (Bok) is structurally similar to Bak and Bax, it is unclear whether it mediates apoptosis in skeletal muscle ischemia reperfusion (IR) injury. We hypothesized that by regulating Bok-mediated apoptosis, inhibiting RIPK1 with necrostatin-1 would reduce skeletal muscle IR injury. METHODS Rats were randomized into four groups: sham (SM), IR, IR treated with necrostatin-1 (NI), or vehicle dimethyl sulfoxide (DI). For the IR group, the right femoral artery was clamped for 4 hours and then reperfused for 4 hours, and for the NI and DI groups, necrostatin-1 (1.65 mg/kg) and the equal volume of dimethyl sulfoxide were intraperitoneally administered prior to IR induction. The structural damage of muscle tissue and protein expression of Bok, Bcl-2, and cleaved caspase-3 were investigated, and apoptotic cells were identified with terminal dUTP nick-end labeling (TUNEL) staining. In vitro, human skeletal muscle cells (HSMCs) were exposed to 6 hours of oxygen-glucose deprivation followed by normoxia for 6 hours to establish an oxygen-glucose deprivation/reoxygenation (OGD/R) model. To determine the role of Bok, cell viability, lactate dehydrogenase (LDH) release, and flow cytometry were examined to demonstrate the effects of necrostatin-1 and Bok knockdown on the OGD/R insult of HSMCs. RESULTS Necrostatin-1 pretreatment markedly reduced IR-induced muscle damage and RIPK1, Bok, and cleaved caspase-3 expression, whereas upregualted Bcl-2 expression (p < 0.05). Furthermore, necrostatin-1 prevented mitochondrial damage and decreased TUNEL-positive muscle cells (p < 0.05). In vitro, HSMCs treated with necrostatin-1 showed reduced Bok expression, increased cell viability, and reduced LDH release in response to OGD/R (p < 0.05), and Bok knockdown significantly blunted the OGD/R insult in HSMCs. CONCLUSION Necrostatin-1 prevents skeletal muscle from IR injury by regulating Bok-mediated apoptosis.
Collapse
Affiliation(s)
- Yu Cao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hong-Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chun-Jue Ni
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shun-Li Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Wan-Tie Wang
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Zhejiang, China
| | - Liang-Rong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
3
|
Bonzerato CG, Keller KR, Schulman JJ, Gao X, Szczesniak LM, Wojcikiewicz RJH. Endogenous Bok is stable at the endoplasmic reticulum membrane and does not mediate proteasome inhibitor-induced apoptosis. Front Cell Dev Biol 2022; 10:1094302. [PMID: 36601536 PMCID: PMC9806350 DOI: 10.3389/fcell.2022.1094302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Controversy surrounds the cellular role of the Bcl-2 family protein Bok. On one hand, it has been shown that all endogenous Bok is bound to inositol 1,4,5-trisphosphate receptors (IP3Rs), while other data suggest that Bok can act as a pro-apoptotic mitochondrial outer membrane permeabilization mediator, apparently kept at very low and non-apoptotic levels by efficient proteasome-mediated degradation. Here we show that 1) endogenous Bok is expressed at readily-detectable levels in key cultured cells (e.g., mouse embryonic fibroblasts and HCT116 cells) and is not constitutively degraded by the proteasome, 2) proteasome inhibitor-induced apoptosis is not mediated by Bok, 3) endogenous Bok expression level is critically dependent on the presence of IP3Rs, 4) endogenous Bok is rapidly degraded by the ubiquitin-proteasome pathway in the absence of IP3Rs at the endoplasmic reticulum membrane, and 5) charged residues in the transmembrane region of Bok affect its stability, ability to interact with Mcl-1, and pro-apoptotic activity when over-expressed. Overall, these data indicate that endogenous Bok levels are not governed by proteasomal activity (except when IP3Rs are deleted) and that while endogenous Bok plays little or no role in apoptotic signaling, exogenous Bok can mediate apoptosis in a manner dependent on its transmembrane domain.
Collapse
|
4
|
Yang Y, Wu Y, Meng X, Wang Z, Younis M, Liu Y, Wang P, Huang X. SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK. Cell Death Differ 2022; 29:1395-1408. [PMID: 35022571 PMCID: PMC8752586 DOI: 10.1038/s41418-022-00928-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Deaths caused by coronavirus disease 2019 (COVID-19) are largely due to the lungs edema resulting from the disruption of the lung alveolo-capillary barrier, induced by SARS-CoV-2-triggered pulmonary cell apoptosis. However, the molecular mechanism underlying the proapoptotic role of SARS-CoV-2 is still unclear. Here, we revealed that SARS-CoV-2 membrane (M) protein could induce lung epithelial cells mitochondrial apoptosis. Notably, M protein stabilized B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) via inhibiting its ubiquitination and promoted BOK mitochondria translocation. The endodomain of M protein was required for its interaction with BOK. Knockout of BOK by CRISPR/Cas9 increased cellular resistance to M protein-induced apoptosis. BOK was rescued in the BOK-knockout cells, which led to apoptosis induced by M protein. M protein induced BOK to trigger apoptosis in the absence of BAX and BAK. Furthermore, the BH2 domain of BOK was required for interaction with M protein and proapoptosis. In vivo M protein recombinant lentivirus infection induced caspase-associated apoptosis and increased alveolar-capillary permeability in the mouse lungs. BOK knockdown improved the lung edema due to lentivirus-M protein infection. Overall, M protein activated the BOK-dependent apoptotic pathway and thus exacerbated SARS-CoV-2 associated lung injury in vivo. These findings proposed a proapoptotic role for M protein in SARS-CoV-2 pathogenesis, which may provide potential targets for COVID-19 treatments.
Collapse
Affiliation(s)
- Yang Yang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaojun Meng
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Zhiying Wang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Muhammad Younis
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Ye Liu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Peihui Wang
- Cheeloo College of Medicine, Advanced Medical Research Institute, Shandong University, Jinan, Shandong Province, 250012, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China.
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
5
|
Dong X, Liu Q, Zhao W, Ou J, Jiang F, Guo H, Lv L. Effects of ammonia-N stress on the antioxidant enzymes, heat shock proteins, and apoptosis-related genes of Macrobrachium rosenbergii. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1886612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xuexing Dong
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Qigen Liu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Weihong Zhao
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Jiangtao Ou
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - FengJuan Jiang
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Haisong Guo
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Linlan Lv
- Department of Ocean Technology, Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| |
Collapse
|
6
|
Xia T, Cao Y, Li J, Zhang X, Wang G, Xue X. Etomidate Regulates miR-192-5p Expression to Reduce Hypoxia-Reoxygenation Induced Bronchial Epithelial Cell Damage. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Etomidate is a new type of intravenous anesthetic that can protect bronchial epithelial cells from oxidative stress damage. miR-192-5p is upregulated in 6-hydroxydopamine-induced neurocytes. This study explored the effect of etomidate on bronchial epithelial cell apoptosis and oxidative
stress induced by hypoxia and reoxygenation and its regulatory effect on miR-192-5p. The human bronchial epithelial cells BEAS-2B were cultured in vitro and then subjected to hypoxia and reoxygenation to establish a cell injury model. The cells were then treated with etomidate at different
doses. Moreover, anti-miR-NC and anti-miR-192-5p were transfected into the BEAS-2B cells to treat the hypoxia-reoxygenation. Moreover, miR-NC and miR-192-5p mimics were transfected into BEAS-2B cells, followed by treatment with 90 µmol/L etomidate for 24 h and then treatment with hypoxia
and reoxygenation. The 2,4-dinitrophenylhydrazine method was used to determine the level of LDH in the culture medium of cardiomyocytes. Thiobarbituric acid was used to determine the level of MDA and xanthine oxidase to determine the activity of SOD. Flow cytometry was used to measure the
apoptosis rate and qRT-PCR to evaluate miR-192-5p expression. Western blotting was used to determine the Bax and Bcl-2 protein levels. Compared with the findings in the control group, the levels of LDH and MDA, the apoptosis rate, and the protein level of Bax were increased (P <
0.05) upon treatment with hypoxia and reoxygenation, while SOD activity and Bcl-2 protein level were decreased (P < 0.05). In a manner dependent on the dose, etomidate could significantly reverse the effects of hypoxia and reoxygenation on oxidative stress and apoptosis of BEAS-2B
cells (P < 0.05). Hypoxia and reoxygenation could significantly increase the miR-192-5p level of BEAS-2B cells (P < 0.05), while etomidate could reduce this miR-192-5p expression (P < 0.05) in a dose-dependent manner. Transfection of anti-miR-192-5p dramatically
reduced LDH, MDA, apoptosis rate, and Bax protein level (P < 0.05), but was associated with increases of SOD activity and Bcl-2 protein expression (P < 0.05). High expression of miR-192-5p could significantly reverse the influence of etomidate on apoptosis and oxidative
stress of BEAS-2B cells induced by hypoxia-reoxygenation (P < 0.05). Etomidate restrained the apoptosis of bronchial epithelial cells and oxidative stress induced by hypoxia and reoxygenation by inhibiting miR-192-5p expression, thereby reducing cell damage.
Collapse
Affiliation(s)
- Tian Xia
- Department of Pharmacy, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| | - Yang Cao
- Department of Pharmacy, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| | - Jinxiu Li
- Department of Intensive Care Unit, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| | - Xin Zhang
- Department of Pharmacy, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| | - Guangyuan Wang
- Department of Intensive Care Unit, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| | - Xiuyue Xue
- Department of Intensive Care Unit, The Second People’s Hospital of Liaocheng, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng 252600, Shandong, PR China
| |
Collapse
|
7
|
Požgajová M, Navrátilová A, Šebová E, Kovár M, Kačániová M. Cadmium-Induced Cell Homeostasis Impairment is Suppressed by the Tor1 Deficiency in Fission Yeast. Int J Mol Sci 2020; 21:ijms21217847. [PMID: 33105893 PMCID: PMC7660220 DOI: 10.3390/ijms21217847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Cadmium has no known physiological function in the body; however, its adverse effects are associated with cancer and many types of organ system damage. Although much has been shown about Cd toxicity, the underlying mechanisms of its responses to the organism remain unclear. In this study, the role of Tor1, a catalytic subunit of the target of rapamycin complex 2 (TORC2), in Cd-mediated effects on cell proliferation, the antioxidant system, morphology, and ionome balance was investigated in the eukaryotic model organism Schizosaccharomyces pombe. Surprisingly, spectrophotometric and biochemical analyses revealed that the growth rate conditions and antioxidant defense mechanisms are considerably better in cells lacking the Tor1 signaling. The malondialdehyde (MDA) content of Tor1-deficient cells upon Cd treatment represents approximately half of the wild-type content. The microscopic determination of the cell morphological parameters indicates the role for Tor1 in cell shape maintenance. The ion content, determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), showed that the Cd uptake potency was markedly lower in Tor1-depleted compared to wild-type cells. Conclusively, we show that the cadmium-mediated cell impairments in the fission yeast significantly depend on the Tor1 signaling. Additionally, the data presented here suggest the yet-undefined role of Tor1 in the transport of ions.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4919
| | - Alica Navrátilová
- Department of Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | - Eva Šebová
- Institute of Experimental Medicine, Czech Academy of Science, 14220 Prague, Czech Republic;
| | - Marek Kovár
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 35-601 Rzeszow, Poland
| |
Collapse
|
8
|
Naim S, Kaufmann T. The Multifaceted Roles of the BCL-2 Family Member BOK. Front Cell Dev Biol 2020; 8:574338. [PMID: 33043006 PMCID: PMC7523462 DOI: 10.3389/fcell.2020.574338] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
BCL-2-related ovarian killer (BOK) is-despite its identification over 20 years ago-an incompletely understood member of the BCL-2 family. BCL-2 family proteins are best known for their critical role in the regulation of mitochondrial outer membrane permeabilization during the intrinsic apoptotic pathway. Based on sequence and structural similarities to BAX and BAK, BOK is grouped with these "killers" within the effector subgroup of the family. However, the mechanism of how exactly BOK exerts apoptosis is not clear and controversially discussed. Furthermore, and in accordance with reports on several other BCL-2 family members, BOK seems to be involved in the regulation of a variety of other, "apoptosis-independent" cellular functions, including the unfolded protein response, cellular proliferation, metabolism, and autophagy. Of note, compared with other proapoptotic BCL-2 family members, BOK levels are often reduced in cancer by various means, and there is increasing evidence for BOK modulating tumorigenesis. In this review, we summarize and discuss apoptotic- and non-apoptotic-related functions of BOK, its regulation as well as its physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Samara Naim
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|