1
|
Lin WZ, Liu YC, Lee MC, Tang CT, Wu GJ, Chang YT, Chu CM, Shiau CY. From GWAS to drug screening: repurposing antipsychotics for glioblastoma. J Transl Med 2022; 20:70. [PMID: 35120529 PMCID: PMC8815269 DOI: 10.1186/s12967-021-03209-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma is currently an incurable cancer. Genome-wide association studies have demonstrated that 41 genetic variants are associated with glioblastoma and may provide an option for drug development. METHODS We investigated FDA-approved antipsychotics for their potential treatment of glioblastoma based on genome-wide association studies data using a 'pathway/gene-set analysis' approach. RESULTS The in-silico screening led to the discovery of 12 candidate drugs. DepMap portal revealed that 42 glioma cell lines show higher sensitivities to 12 candidate drugs than to Temozolomide, the current standard treatment for glioblastoma. CONCLUSION In particular, cell lines showed significantly higher sensitivities to Norcyclobenzaprine and Protriptyline which were predicted to bind targets to disrupt a certain molecular function such as DNA repair, response to hormones, or DNA-templated transcription, and may lead to an effect on survival-related pathways including cell cycle arrest, response to ER stress, glucose transport, and regulation of autophagy. However, it is recommended that their mechanism of action and efficacy are further determined.
Collapse
Affiliation(s)
- Wei-Zhi Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Yen-Chun Liu
- School of Medicine, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Meng-Chang Lee
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chi-Tun Tang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11490 Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11490 Taiwan
| | - Yu-Tien Chang
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chi-Ming Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chia-Yang Shiau
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
- Fidelity Regulation Therapeutics Inc., 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| |
Collapse
|
2
|
Mavridou D, Psatha K, Aivaliotis M. Proteomics and Drug Repurposing in CLL towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13143391. [PMID: 34298607 PMCID: PMC8303629 DOI: 10.3390/cancers13143391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Despite continued efforts, the current status of knowledge in CLL molecular pathobiology, diagnosis, prognosis and treatment remains elusive and imprecise. Proteomics approaches combined with advanced bioinformatics and drug repurposing promise to shed light on the complex proteome heterogeneity of CLL patients and mitigate, improve, or even eliminate the knowledge stagnation. In relation to this concept, this review presents a brief overview of all the available proteomics and drug repurposing studies in CLL and suggests the way such studies can be exploited to find effective therapeutic options combined with drug repurposing strategies to adopt and accost a more “precision medicine” spectrum. Abstract CLL is a hematological malignancy considered as the most frequent lymphoproliferative disease in the western world. It is characterized by high molecular heterogeneity and despite the available therapeutic options, there are many patient subgroups showing the insufficient effectiveness of disease treatment. The challenge is to investigate the individual molecular characteristics and heterogeneity of these patients. Proteomics analysis is a powerful approach that monitors the constant state of flux operators of genetic information and can unravel the proteome heterogeneity and rewiring into protein pathways in CLL patients. This review essences all the available proteomics studies in CLL and suggests the way these studies can be exploited to find effective therapeutic options combined with drug repurposing approaches. Drug repurposing utilizes all the existing knowledge of the safety and efficacy of FDA-approved or investigational drugs and anticipates drug alignment to crucial CLL therapeutic targets, leading to a better disease outcome. The drug repurposing studies in CLL are also discussed in this review. The next goal involves the integration of proteomics-based drug repurposing in precision medicine, as well as the application of this procedure into clinical practice to predict the most appropriate drugs combination that could ensure therapy and the long-term survival of each CLL patient.
Collapse
Affiliation(s)
- Dimitra Mavridou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina Psatha
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Greece
- Correspondence: (K.P.); (M.A.)
| | - Michalis Aivaliotis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Greece
- Correspondence: (K.P.); (M.A.)
| |
Collapse
|
3
|
Yang J, Wang F, Zhong S, Chen B. Identification of hub genes with prognostic values in multiple myeloma by bioinformatics analysis. ACTA ACUST UNITED AC 2021; 26:453-459. [PMID: 34165034 DOI: 10.1080/16078454.2021.1943617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Multiple myeloma (MM) is a malignant disease with abnormal proliferation of clonal plasma cells. Hypoxia is an important factor in the pathogenesis and development of MM. However, the underlying mechanisms are not fully understood. MATERIAL & METHODS To determine hub genes related to hypoxia in MM, this study took integrated bioinformatics analysis with two expression datasets (GSE80140 and GSE80545) downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were filtrated under the condition of both p-value < 0.05 and [log2FoldChange (log2FC)] > 1. Then, gene ontology (GO) and Kyoto encyclopedia of genes and genomes enrichment (KEGG) analysis, and protein-protein interaction (PPI) network construction were utilized to further explore these DEGs. PrognoScan evaluated all the candidate hub genes for survival analysis. RESULTS In total, three hub genes, including FH, TSTA3, and POLR3G, were screened out to be related to hypoxia in MM. Patients with the lower expression level of FH, TSTA3, and POLR3G have statistically significantly longer disease- specific survival (Cox p < 0.05). CONCLUSION We identified FH, TSTA3, and POLR3G as hub genes which can affect MM patients'outcome and new biomarkers for diagnosis and prognosis of MM. Further functional and mechanistic studies are need to develop in order to make them as potential target for clinical treatment.
Collapse
Affiliation(s)
- Jie Yang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Fei Wang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
HLA-DPA1 gene is a potential predictor with prognostic values in multiple myeloma. BMC Cancer 2020; 20:915. [PMID: 32972413 PMCID: PMC7513295 DOI: 10.1186/s12885-020-07393-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Multiple myeloma (MM) is an incurable hematological tumor, which is closely related to hypoxic bone marrow microenvironment. However, the underlying mechanisms are still far from fully understood. We took integrated bioinformatics analysis with expression profile GSE110113 downloaded from National Center for Biotechnology Information-Gene Expression Omnibus (NCBI-GEO) database, and screened out major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1) as a hub gene related to hypoxia in MM. Methods Differentially expressed genes (DEGs) were filtrated with R package “limma”. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed using “clusterProfiler” package in R. Then, protein-protein interaction (PPI) network was established. Hub genes were screened out according to Maximal Clique Centrality (MCC). PrognoScan evaluated all the significant hub genes for survival analysis. ScanGEO was used for visualization of gene expression in different clinical studies. P and Cox p value < 0.05 was considered to be statistical significance. Results HLA-DPA1 was finally picked out as a hub gene in MM related to hypoxia. MM patients with down-regulated expression of HLA-DPA1 has statistically significantly shorter disease specific survival (DSS) (COX p = 0.005411). Based on the clinical data of GSE47552 dataset, HLA-DPA1 expression showed significantly lower in MM patients than that in healthy donors (HDs) (p = 0.017). Conclusion We identified HLA-DPA1 as a hub gene in MM related to hypoxia. HLA-DPA1 down-regulated expression was associated with MM patients’ poor outcome. Further functional and mechanistic studies are need to investigate HLA-DPA1 as potential therapeutic target.
Collapse
|
5
|
Li A, Chen X, Jing Z, Chen J. Trifluoperazine induces cellular apoptosis by inhibiting autophagy and targeting NUPR1 in multiple myeloma. FEBS Open Bio 2020; 10:2097-2106. [PMID: 32810364 PMCID: PMC7530380 DOI: 10.1002/2211-5463.12960] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy of immunoglobulin-secreting plasma cells. Recent modern combination therapies have improved survival rates, but many patients develop resistance to novel drugs, leading to relapse. Trifluoperazine (TFP), a typical antipsychotic drug, has been reported to exert antitumor effects by targeting various pathways. Thus far, the role of TFP in MM has not been elucidated. In the current study, we demonstrated that TFP inhibited cell growth and autophagy activity but induced apoptosis of U266 and RPMI 8226 MM cells. Furthermore, cotreatment of these cell lines with TFP and rapamycin, a potent autophagy inducer, reduced cell apoptosis compared with TFP treatment alone. We also found that TFP inhibited nuclear protein 1 (NUPR1) expression. In the presence of TFP, cells stably overexpressing NUPR1 showed a higher viability than cells treated with the nonspecific control. Autophagy suppression and apoptosis induction caused by TFP were also reversed in MM cells upon NUPR1 overexpression. Overall, our results indicate that in the context of MM, TFP targets NUPR1, inhibiting cell growth and inducing apoptosis by autophagy inhibition. Our results could contribute toward efforts for the development of more effective therapies for MM to be tested in future clinical trials.
Collapse
Affiliation(s)
- Anmao Li
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Xuanxin Chen
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Zizi Jing
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Jianbin Chen
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| |
Collapse
|
6
|
Wang M, Shi Y, Yao L, Li Q, Wang Y, Fu D. Potential Molecular Mechanisms and Drugs for Aconitine-Induced Cardiotoxicity in Zebrafish through RNA Sequencing and Bioinformatics Analysis. Med Sci Monit 2020; 26:e924092. [PMID: 32598336 PMCID: PMC7341694 DOI: 10.12659/msm.924092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Accumulating evidence suggests that cardiotoxicity is one of the main manifestations of aconitine (AC) poisoning. However, the molecular mechanism of AC-induced cardiotoxicity remains unclear, there is little direct evidence for therapeutic targets and drugs of AC-induced cardiotoxicity. Material/Methods Zebrafish were exposed to AC to evaluate cardiotoxicity by calculating the heart rates and observing the changes of cardiac and vascular structure. RNA-seq (RNA sequencing) and bioinformatics analysis were used to obtain differentially expressed genes (DEGs). The anti-AC cardiotoxicity compound was identified via connectivity map (CMAP) analysis and molecular docking. Results AC-induced cardiotoxicity in zebrafish predominantly included arrhythmias, extended sinus venous and bulbus arteriosus (SV-BA) distance, and larger pericardial edema aera. A total of 1380 DEGs were identified by RNA-seq and bioinformatics analysis. cyclin-dependent kinase-1 (CDK1) was screened as the hub gene and the most potential therapeutic target due to its significant downregulation in cardiotoxicity based on protein-protein interaction (PPI) and drug-gene interaction (DGIdb) network analysis. Cell cycle signal pathway was the most significant pathways identified in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the expression of CDK1 was validated in the Gene Expression Omnibus (GEO) database GSE71906, GSE65705, and GSE95140. Finally, heptaminol was identified as a novel anti-AC cardiotoxicity compound via CMAP analysis and molecular docking. Conclusions Totally, hub genes and key pathways identified in this study can aid in the understanding of the molecular changes in AC-induced cardiotoxicity. Meanwhile, we provide a systematic method to explore drug toxicity prevention and treatment.
Collapse
Affiliation(s)
- Mingzhu Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Yanan Shi
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Lei Yao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Qiang Li
- Children's Hospital of Fudan University, Shanghai, China (mainland)
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Deyu Fu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| |
Collapse
|