1
|
Binti Kamaruddin NA, Fong LY, Tan JJ, Abdullah MNH, Singh Cheema M, Bin Yakop F, Yong YK. Cytoprotective Role of Omentin Against Oxidative Stress-Induced Vascular Endothelial Cells Injury. Molecules 2020; 25:E2534. [PMID: 32485974 PMCID: PMC7321413 DOI: 10.3390/molecules25112534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/16/2023] Open
Abstract
Endothelial cell injury caused by reactive oxygen species (ROS) plays a critical role in the pathogenesis of cardiovascular diseases. Omentin, an adipocytokine that is abundantly expressed in visceral fat tissue, has been reported to possess anti-inflammatory and antidiabetic properties. However, endothelial protective effects of omentin against oxidative stress remain unclear. This study aimed to evaluate the protective effect of omentin against hydrogen peroxide (H2O2)-induced cell injury in human umbilical vein endothelial cells (HUVECs). Cytotoxicity and cytoprotective effects of omentin were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic activity of HUVECs was detected using Annexin-V/PI and Hoechst 33258 staining methods. Antioxidant activity of omentin was evaluated by measuring both reactive oxygen species (ROS) levels and glutathione peroxidase (GPx) activity. No cytotoxicity effect was observed in HUVECs treated with omentin alone at concentrations of 150 to 450 ng/ml. MTT assay showed that omentin significantly prevented the cell death induced by H2O2 (p < 0.001). Hoechst staining and flow cytometry also revealed that omentin markedly prevented H2O2-induced apoptosis. Moreover, omentin not only significantly inhibited ROS production (p < 0.01) but also significantly (p < 0.01) increased GPx activity in HUVECs. In conclusion, our data suggest that omentin may protect HUVECs from injury induced by H2O2.
Collapse
Affiliation(s)
- Nur Aqilah Binti Kamaruddin
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Lai Yen Fong
- Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia;
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia;
| | - Muhammad Nazrul Hakim Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.N.H.A.); (M.S.C.)
| | - Manraj Singh Cheema
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.N.H.A.); (M.S.C.)
| | - Fahmi Bin Yakop
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
2
|
Nlandu-Khodo S, Osaki Y, Scarfe L, Yang H, Phillips-Mignemi M, Tonello J, Saito-Diaz K, Neelisetty S, Ivanova A, Huffstater T, McMahon R, Taketo MM, deCaestecker M, Kasinath B, Harris RC, Lee E, Gewin LS. Tubular β-catenin and FoxO3 interactions protect in chronic kidney disease. JCI Insight 2020; 5:135454. [PMID: 32369448 DOI: 10.1172/jci.insight.135454] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays an important role in renal development and is reexpressed in the injured kidney and other organs. β-Catenin signaling is protective in acute kidney injury (AKI) through actions on the proximal tubule, but the current dogma is that Wnt/β-catenin signaling promotes fibrosis and development of chronic kidney disease (CKD). As the role of proximal tubular β-catenin signaling in CKD remains unclear, we genetically stabilized (i.e., activated) β-catenin specifically in murine proximal tubules. Mice with increased tubular β-catenin signaling were protected in 2 murine models of AKI to CKD progression. Oxidative stress, a common feature of CKD, reduced the conventional T cell factor/lymphoid enhancer factor-dependent β-catenin signaling and augmented FoxO3-dependent activity in proximal tubule cells in vitro and in vivo. The protective effect of proximal tubular β-catenin in renal injury required the presence of FoxO3 in vivo. Furthermore, we identified cystathionine γ-lyase as a potentially novel transcriptional target of β-catenin/FoxO3 interactions in the proximal tubule. Thus, our studies overturned the conventional dogma about β-catenin signaling and CKD by showing a protective effect of proximal tubule β-catenin in CKD and identified a potentially new transcriptional target of β-catenin/FoxO3 signaling that has therapeutic potential for CKD.
Collapse
Affiliation(s)
- Stellor Nlandu-Khodo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Yosuke Osaki
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Lauren Scarfe
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, Tennessee, USA
| | - Melanie Phillips-Mignemi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Jane Tonello
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | | | - Surekha Neelisetty
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Alla Ivanova
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Tessa Huffstater
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Robert McMahon
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mark deCaestecker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Balakuntalam Kasinath
- Department of Medicine, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology and
| | - Leslie S Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Department of Cell and Developmental Biology and.,Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|