1
|
Zhang C, Chen Z, Gao N, Xiong G, Chen P, Li H, Chen D, He Q, Peng L. SOX18 meditates the resistance of Bmi1-expressing cells to cetuximab in HNSCC. Oral Dis 2024; 30:1100-1113. [PMID: 37184032 DOI: 10.1111/odi.14596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE Head and neck squamous cell carcinoma (HNSCC) is the most common type of malignancy in the head and neck region worldwide. The therapeutic strategies for HNSCC remain unsatisfying and limited. Here, we found a population of resistant Bmi1-expressing cells in the presence of cetuximab treatment and reported a novel role of SRY-box transcription factor 18 (SOX18), a member of the SOX family, in promoting HNSCC resistance to cetuximab. This study aimed to investigate the regulatory mechanism of Sox18 in Bmi1-positive cells and to search for better therapeutic targets. METHODS We successfully obtained Bmi1CreER, RosatdTomato, and RosaDTA mice and identified Bmi1-expressing cells through lineage tracing. SOX18 expression in HNSCC and normal tissues was analyzed by immunohistochemistry, colocalization of Sox18, and Bmi1-expressing cells was analyzed by immunofluorescence, and SOX18 expression in SCC9 cell lines was quantified by western blotting and quantitative real-time PCR. The investigation of the mechanism of SOX18-mediated cetuximab resistance in Bmi1-positive cells was based on the analysis of single-cell RNA-seq data obtained from the Gene Expression Omnibus (GEO) database. Western blotting was performed to verify the results obtained from the single-cell RNA-seq analysis. RESULTS In our study, we demonstrated that Bmi1-expressing cells were resistant to cetuximab treatment and that depletion of Bmi1-expressing cells improved cetuximab efficacy in HNSCC. We then discovered that Sox18 mediated the stem cell-like properties of Bmi1-expressing cells and promoted cellular cetuximab resistance through an oxidative phosphorylation pathway. There was a significant downregulation of key genes in the oxidative phosphorylation pathway in Sox18 knockout cell lines. CONCLUSIONS Taken together, the findings of our study suggest that Sox18 mediates the resistance of Bmi1-expressing cells to cetuximab in HNSCC via the oxidative phosphorylation pathway.
Collapse
Affiliation(s)
- Caihua Zhang
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chen
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nailin Gao
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gan Xiong
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Chen
- Oncology Department, Chinese PLA General Hospital, Beijing, China
| | - Hui Li
- Stomatology Department, Chinese PLA General Hospital, Beijing, China
| | - Demeng Chen
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Peng
- Oncology Department, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Nguyen TH, Nguyen TM, Ngoc DTM, You T, Park MK, Lee CH. Unraveling the Janus-Faced Role of Autophagy in Hepatocellular Carcinoma: Implications for Therapeutic Interventions. Int J Mol Sci 2023; 24:16255. [PMID: 38003445 PMCID: PMC10671265 DOI: 10.3390/ijms242216255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review aims to provide a comprehensive understanding of the molecular mechanisms underlying autophagy and mitophagy in hepatocellular carcinoma (HCC). Autophagy is an essential cellular process in maintaining cell homeostasis. Still, its dysregulation is associated with the development of liver diseases, including HCC, which is one of leading causes of cancer-related death worldwide. We focus on elucidating the dual role of autophagy in HCC, both in tumor initiation and progression, and highlighting the complex nature involved in the disease. In addition, we present a detailed analysis of a small subset of autophagy- and mitophagy-related molecules, revealing their specific functions during tumorigenesis and the progression of HCC cells. By understanding these mechanisms, we aim to provide valuable insights into potential therapeutic strategies to manipulate autophagy effectively. The goal is to improve the therapeutic response of liver cancer cells and overcome drug resistance, providing new avenues for improved treatment options for HCC patients. Overall, this review serves as a valuable resource for researchers and clinicians interested in the complex role of autophagy in HCC and its potential as a target for innovative therapies aimed to combat this devastating disease.
Collapse
Affiliation(s)
- Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Taesik You
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cance Center, Goyang 10408, Republic of Korea
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Rodak O, Mrozowska M, Rusak A, Gomułkiewicz A, Piotrowska A, Olbromski M, Podhorska-Okołów M, Ugorski M, Dzięgiel P. Targeting SOX18 Transcription Factor Activity by Small-Molecule Inhibitor Sm4 in Non-Small Lung Cancer Cell Lines. Int J Mol Sci 2023; 24:11316. [PMID: 37511076 PMCID: PMC10379584 DOI: 10.3390/ijms241411316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The transcription factor SOX18 has been shown to play a crucial role in lung cancer progression and metastasis. In this study, we investigated the effect of Sm4, a SOX18 inhibitor, on cell cycle regulation in non-small cell lung cancer (NSCLC) cell lines LXF-289 and SK-MES-1, as well as normal human lung fibroblast cell line IMR-90. Our results demonstrated that Sm4 treatment induced cytotoxic effects on all three cell lines, with a greater effect observed in NSCLC adenocarcinoma cells. Sm4 treatment led to S-phase cell accumulation and upregulation of p21, a key regulator of the S-to-G2/M phase transition. While no significant changes in SOX7 or SOX17 protein expression were observed, Sm4 treatment resulted in a significant upregulation of SOX17 gene expression. Furthermore, our findings suggest a complex interplay between SOX18 and p21 in the context of lung cancer, with a positive correlation observed between SOX18 expression and p21 nuclear presence in clinical tissue samples obtained from lung cancer patients. These results suggest that Sm4 has the potential to disrupt the cell cycle and target cancer cell growth by modulating SOX18 activity and p21 expression. Further investigation is necessary to fully understand the relationship between SOX18 and p21 in lung cancer and to explore the therapeutic potential of SOX18 inhibition in lung cancer.
Collapse
Affiliation(s)
- Olga Rodak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
4
|
Garcia-Flores AE, Gross CM, Zemskov EA, Lu Q, Tieu K, Wang T, Black SM. Loss of SOX18/CLAUDIN5 disrupts the pulmonary endothelial barrier in ventilator-induced lung injury. Front Physiol 2022; 13:1066515. [PMID: 36620216 PMCID: PMC9813411 DOI: 10.3389/fphys.2022.1066515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mechanical strain contributes to ventilator-induced lung injury (VILI) through multi-factorial and complex mechanisms that remain unresolved. Prevailing evidence suggests that the loss of pulmonary endothelial tight junctions (TJs) plays a critical role. TJs are dynamically regulated by physiologic and hemodynamic forces to stabilize the endothelial barrier. The transcription factor sex-determining region Y-box (SOX)-18 is important in regulating blood vessel development and vascular permeability through its ability to regulate the transcription of Claudin-5, an endothelial TJ protein. Previously, we demonstrated that SOX18 expression is increased by shear stress in the pulmonary endothelium. Therefore, in this study, we investigated how mechanical strain mediated through cyclic stretch affects the SOX18/Claudin-5 regulatory axis. Our data demonstrate that SOX18 and Claudin-5 are downregulated in human lung microvascular endothelial cells (HLMVEC) exposed to cyclic stretch and the mouse lung exposed to high tidal mechanical ventilation. Overexpression of SOX18 reduced the loss of Claudin-5 expression in HLMVEC with cyclic stretch and preserved endothelial barrier function. Additionally, overexpression of Claudin-5 in HLMVEC ameliorated barrier dysfunction in HLMVEC exposed to cyclic stretch, although SOX18 expression was not enhanced. Finally, we found that the targeted overexpression of SOX18 in the pulmonary vasculature preserved Claudin-5 expression in the lungs of mice exposed to HTV. This, in turn reduced lung vascular leak, attenuated inflammatory lung injury, and preserved lung function. Together, these data suggest that enhancing SOX18 expression may prove a useful therapy to treat patients with ventilator-induced lung injury.
Collapse
Affiliation(s)
| | - Christine M. Gross
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine at Washington Hospital Center, Washington, DC, United States
| | - Evgeny A. Zemskov
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States
| | - Qing Lu
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States
| | - Ting Wang
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States
| | - Stephen M. Black
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States,Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States,*Correspondence: Stephen M. Black,
| |
Collapse
|
5
|
The Dysregulation of SOX Family Correlates with DNA Methylation and Immune Microenvironment Characteristics to Predict Prognosis in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:2676114. [PMID: 35465267 PMCID: PMC9020970 DOI: 10.1155/2022/2676114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Background Due to the molecular heterogeneity of hepatocellular carcinoma (HCC), majority of patients respond poorly among various of therapy. This study is aimed at conducting a comprehensive analysis about roles of SOX family in HCC for obtaining more therapeutic targets and biomarkers which may bring new ideas for the treatment of HCC. Methods UALCAN, Kaplan Meier plotter, cBioPortal, STRING, WebGestalt, Metascape, TIMER 2.0, DiseaseMeth, MethSurv, HPA, CCLE database, and Cytoscape software were used to comprehensively analyze the bioinformatic data. Results SOX2, SOX4, SOX8, SOX10, SOX11, SOX12, SOX17, and SOX18 were significantly differentially expressed in HCC and normal tissues and were valuable for the grade and survival of HCC patients. In addition, the gene alterations of SOX family happened frequently, and SOX4 and SOX17 had the highest mutation rate. The function of SOX family on HCC may be closely correlated with the regulation of angiogenesis-related signaling pathways. Moreover, SOX4, SOX8, SOX11, SOX12, SOX17, and SOX18 were correlation with 8 types of immune cells (including CD8+ T cell, CD4+ T cell, B cell, Tregs, neutrophil, macrophage, myeloid DC, and NK cell), and we found that most types of immune cells had a positive correlation with SOX family. Notably, CD4+ T cell and macrophage were positively related with all these SOX family. NK cells were negatively related with most SOX family genes. DNA methylation levels in promoter area of SOX2, SOX4, and SOX10 were lower in HCC than normal tissues, while SOX8, SOX11, SOX17, and SOX18 had higher DNA methylation levels than normal tissues. Moreover, higher DNA methylation level of SOX12 and SOX18 demonstrated worse survival rates in patients with HCC. Conclusion SOX family genes could predict the prognosis of HCC. In addition, the regulation of angiogenesis-related signaling pathways may participate in the development of HCC. DNA methylation level and immune microenvironment characteristics (especially CD4+ T cell and macrophage immune cell infiltration) could be a novel insight for predicting prognosis in HCC.
Collapse
|
6
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
7
|
Li J, Zhou W, Mao Q, Gao D, Xiong L, Hu X, Zheng Y, Xu X. HMGB1 Promotes Resistance to Doxorubicin in Human Hepatocellular Carcinoma Cells by Inducing Autophagy via the AMPK/mTOR Signaling Pathway. Front Oncol 2021; 11:739145. [PMID: 34778055 PMCID: PMC8578906 DOI: 10.3389/fonc.2021.739145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Chemoresistance remains as a major hindrance in the treatment of hepatocellular carcinoma (HCC). High mobility group box protein 1 (HMGB1) enhances autophagic flux and protects tumor cells from apoptosis, which results in acquired drug resistance. However, the exact mechanisms underlying HMGB1-modulated autophagy in HCC chemoresistance remain to be defined. In the present study, we found that administration of doxorubicin (DOX) significantly promoted HMGB1 expression and induced HMGB1 cytoplasmic translocation in human HCC cell lines BEL7402 and SMMC7721, which enhanced autophagy that contributes to protecting HCC cells from apoptosis and increasing drug resistance. Moreover, we observed HMGB1 translocation and elevation of autophagy in DOX-resistant BEL7402 and SMMC7721 cells. Additionally, inhibition of HMGB1 and autophagy increased the sensitivities of BEL-7402 and SMMC-7721 cells to DOX and re-sensitized their DOX-resistant cells. Subsequently, we confirmed with HMGB1 regulated autophagy by activating the 5ʹ adenosine monophosphate-activated protein kinase (AMPK)/mTOR pathway. In summary, our results indicate that HMGB1 promotes acquired DOX resistance in DOX-treated BEL7402 and SMMC7721 cells by enhancing autophagy through the AMPK/mTOR signaling pathway. These findings provide the proof-of-concept that HMGB1 inhibitors might be an important targeted treatment strategy for HCC.
Collapse
Affiliation(s)
- Junhua Li
- Basic and Clinical Medical Research Center, Department of Gastroenterology, The First People's Hospital of Jingmen, Jingmen, China
| | - Wei Zhou
- Basic and Clinical Medical Research Center, Department of Gastroenterology, The First People's Hospital of Jingmen, Jingmen, China
| | - Qiang Mao
- Department of Statistics, The First People's Hospital of Jingmen, Jingmen, China
| | - Dandan Gao
- Department of Infectious Diseases, The First People's Hospital of Jingmen, Jingmen, China
| | - Lin Xiong
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyao Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongfa Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Li Z, Liu B, Li C, Sun S, Zhang H, Sun S, Wang Z, Zhang X. NRBP2 Functions as a Tumor Suppressor and Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer. Front Oncol 2021; 11:634026. [PMID: 33816275 PMCID: PMC8012753 DOI: 10.3389/fonc.2021.634026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
Nuclear Receptor Binding Protein 2 (NRBP2), one of the pseudokinases discovered during a screen of neural differentiation genes, inhibits tumor progression in medulloblastoma and hepatocellular carcinoma. However, the role and the mechanism of NRBP2 in the regulation of the progression of breast cancer (BC) have not been reported. In our study, NRBP2 was downregulated in human BC tissues compared with the corresponding normal tissues. Moreover, bioinformatics and cellular experiments illustrated that a lower level of NRBP2 contributed to a poor prognosis for patients with BC. In addition, we characterized the NRBP2-overexpressing BC cells and found that NRBP2 overexpression dramatically suppressed cell proliferation and invasion and inhibited the epithelial-mesenchymal transition (EMT) in cells in vitro, whereas knockdown of NRBP2 reversed these effects. Furthermore, overexpression of NRBP2 in the orthotopic breast tumor model significantly reduced lung metastatic nodules in nude mice. Mechanistically, NRBP2 regulated the activation of the 5′-adenosine monophosphate (AMP)-activated protein kinase/ mammalian target of rapamycin (AMPK/mTOR) signaling pathway. Moreover, the inhibition of cell proliferation, invasion and the EMT by NRBP2 overexpression was partially rescued after treatment with an AMPK inhibitor. Conversely, mTOR-specific inhibitors eliminated the effects of NRBP2 knockdown on increasing cell proliferation, invasion and the EMT, which suggested the anti-tumor effect of NRBP2, which may be partially related to the regulation of the AMPK/mTOR pathway. Taken together, NRBP2, a novel and effective prognostic indicator, inhibited the progression of BC and may become a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bingxiong Liu
- Department of General Surgery, Hanchuan People's Hospital, Hanchuan, China
| | - Chenyuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanpu Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiongjie Zhang
- Department of General Surgery, Hanchuan People's Hospital, Hanchuan, China
| |
Collapse
|
9
|
Gao C, Fang L, Zhang H, Zhang WS, Li XO, Du SY. Metformin Induces Autophagy via the AMPK-mTOR Signaling Pathway in Human Hepatocellular Carcinoma Cells. Cancer Manag Res 2020; 12:5803-5811. [PMID: 32765083 PMCID: PMC7371564 DOI: 10.2147/cmar.s257966] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Background Metformin may exert the anticancer effect on multiple types of cancers and some potential mechanisms have been suggested. Our study was designed to determine the effect of metformin on the cell autophagy and autophagic flux via the AMPK-mTOR signaling pathway in human hepatocellular carcinoma (HCC) cells. Methods MHCC97H and HepG2 cell lines were cultured and treated without and with metformin at various concentrations (2, 5, 10 and 20 mM) for 48 h. Then, 10 mM was determined as the optimal concentration and the HCC cells were treated with metformin for 12, 24, 48, and 72 h. MTT assay was used to assess the cell viability and Western blotting was used to determine the expression of proteins (LC3-II, p62, phospho-AMPKα, phospho-mTOR, mTOR, phospho-p70 S6 Kinase, p70 S6 Kinase, PARP1, Caspase-9 and Caspase-3). Autophagy inhibitor 3-methyladenine, EGFP-LC3 and mCherry-GFP-LC3B plasmid transfection were used for further study. Results Metformin inhibited significantly the viability of MHCC97H and HepG2 cells in a dose- and time-dependent manner. For the apoptotic properties, activation of Caspase-9 and Caspase-3 and PARP cleavage were not observed after treatment with metformin. MHCC97H cells were transfected with a EGFP-LC3 plasmid and treatment with metformin could lead to the increased level of LC3-II and decreased level of p62. In metformin-induced autophagy, AMPK expression was activated, and the phosphorylation levels of mTOR and p70 S6 Kinase were inhibited. Metformin treatment and mCherry-GFP-LC3B plasmid transfection showed that metformin could induce the autophagic flux. 3-Methyladenine (3-MA) partly abolished this effect. Conclusion Metformin could induce the autophagy, autophagic flux, and activate the AMPK-mTOR signaling pathway in human HCC cells.
Collapse
Affiliation(s)
- Chun Gao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Long Fang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Hui Zhang
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Wei-Shuo Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Xiao-Ou Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Shi-Yu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| |
Collapse
|
10
|
Qin A, Wu J, Zhai M, Lu Y, Huang B, Lu X, Jiang X, Qiao Z. Axin1 inhibits proliferation, invasion, migration and EMT of hepatocellular carcinoma by targeting miR-650. Am J Transl Res 2020; 12:1114-1122. [PMID: 32269738 PMCID: PMC7137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a high mortality rate and low survival rate. This study was designed to explore a novel molecular with high sensitivity and specificity, which can be applied in early diagnosis and therapeutic evaluation of HCC. The current study aims to investigate the effect and important role of Axin1 on cell proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma. qRT-PCR results showed lower Axin1 expression level and higher miR-650 expression level in HCC. Luciferase reporter assay was carried out to verify the negative correlation between Axin1 and miR-650 mRNA levels. CCK-8 assay results showed that the cell proliferation ability was significantly suppressed by Axin1 overexpression in SK-HEP-1 cells. The results in wound healing assay uncovered that cell migration ability was markedly suppressed by Axin1 overexpression. The results in trans-well invasion assay showed that Axin1 overexpression caused decreased invasive ability in SK-HEP-1 cells. The WB results showed that the protein level of E-cad was significantly increased and the protein levels of N-cad, vimentin and snail were obviously reduced following Axin1 overexpression. Whereas, the suppressive effects on cell proliferation, migration, invasion and EMT caused by Axin1 overexpression were abolished by miR-650 mimic. All the results in the current study confirmed the truth that Axin1 overexpression could suppress cell proliferation, migration, invasion and EMT by downregulating miR-650 expression.
Collapse
Affiliation(s)
- Ancheng Qin
- Department of Hepatobiliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215002, Jiangsu, P. R. China
| | - Jianwu Wu
- Department of Hepatobiliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215002, Jiangsu, P. R. China
| | - Min Zhai
- Department of Hepatobiliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215002, Jiangsu, P. R. China
| | - Yijie Lu
- Department of Hepatobiliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215002, Jiangsu, P. R. China
| | - Bo Huang
- Department of Hepatobiliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215002, Jiangsu, P. R. China
| | - Xingsheng Lu
- Department of Hepatobiliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215002, Jiangsu, P. R. China
| | - Xinwei Jiang
- Department of Hepatobiliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215002, Jiangsu, P. R. China
| | - Zhiming Qiao
- Department of Hepatobiliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215002, Jiangsu, P. R. China
| |
Collapse
|