1
|
Xu L, Pan F, Guo Z. TIPE2: A Candidate for Targeting Antitumor Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:755-763. [PMID: 38377476 DOI: 10.4049/jimmunol.2300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 02/22/2024]
Abstract
TNF-α-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a recently discovered negative regulator of innate and adaptive immunity. TIPE2 is expressed in a wide range of tissues, both immune and nonimmune, and is implicated in the maintenance of immune homeostasis within the immune system. Furthermore, TIPE2 has been shown to play a pivotal role in the regulation of inflammation and the development of tumor. This review focuses on the structural characteristics, expression patterns, and functional roles of TIPE proteins, with a particular emphasis on the role and underlying mechanisms of TIPE2 in immune regulation and its involvement in different diseases. However, the current body of evidence is still limited in providing a comprehensive understanding of the complex role of TIPE2 in the human body, warranting further investigation to elucidate the possible mechanisms and functions of TIPE2 in diverse disease contexts.
Collapse
Affiliation(s)
- Luxia Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Xie C, Hu J, Cheng Y, Yao Z. Researches on cognitive sequelae of burn injury: Current status and advances. Front Neurosci 2022; 16:1026152. [PMID: 36408414 PMCID: PMC9672468 DOI: 10.3389/fnins.2022.1026152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 09/29/2023] Open
Abstract
Burn injury is a devastating disease with high incidence of disability and mortality. The cognitive dysfunctions, such as memory defect, are the main neurological sequelae influencing the life quality of burn-injured patients. The post-burn cognitive dysfunctions are related to the primary peripheral factors and the secondary cerebral inflammation, resulting in the destruction of blood-brain barrier (BBB), as is shown on Computed Tomography (CT) and magnetic resonance imaging examinations. As part of the neurovascular unit, BBB is vital to the nutrition and homeostasis of the central nervous system (CNS) and undergoes myriad alterations after burn injury, causing post-burn cognitive defects. The diagnosis and treatment of cognitive dysfunctions as burn injury sequelae are of great importance. In this review, we address the major manifestations and interventions of post-burn cognitive defects, as well as the mechanisms involved in memory defect, including neuroinflammation, destruction of BBB, and hormone imbalance.
Collapse
Affiliation(s)
- Chenchen Xie
- Department of Neurology, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yong Cheng
- Department of Neurology, General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Zhongxiang Yao
- Department of Physiology, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Huang L, Zhang X, Fan J, Liu X, Luo S, Cao D, Liu Y, Xia Z, Zhong H, Chen C, Zhang L, Liu Z, Tang J. EGFR promotes the apoptosis of CD4 + T lymphocytes through TBK1/Glut1 induced Warburg effect in sepsis. J Adv Res 2022; 44:39-51. [PMID: 35618635 PMCID: PMC9936423 DOI: 10.1016/j.jare.2022.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Sepsis-induced apoptosis leads to lymphopenia including the decrease of CD4+ T cells thus favoring immunosuppression. OBJECTIVES Although epidermal growth factor receptor (EGFR) inhibitors significantly improve the survival rate of septic mice, the effect of EGFR on the function and metabolism of CD4+ T cells in sepsis remained unknown. METHODS CD4+ T cells from septic mice and patients were assessed for apoptosis, activation, Warburg metabolism and glucose transporter 1 (Glut1) expression with or without the interference of EGFR activation. RESULTS EGFR facilitates CD4+ T cell activation and apoptosis through Glut1, which is a key enzyme that controls glycolysis in T cells. EGFR, TANK binding kinase 1 (TBK1) and Glut1 form a complex to facilitate Glut1 transportation from cytoplasm to cell surface. Both the levels of membrane expression of EGFR and Glut1 and the activation levels of CD4+ T cells were significantly higher in patients with sepsis as compared with healthy subjects. CONCLUSION Our data demonstrated that through its downstream TBK1/Exo84/RalA protein system, EGFR regulates Glut1 transporting to the cell surface, which is a key step for inducing the Warburg effect and the subsequent cellular activation and apoptosis of CD4+ T lymphocytes and may eventually affect the immune functional status, causing immune cell exhaustion in sepsis.
Collapse
Affiliation(s)
- Li Huang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xuedi Zhang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junyu Fan
- The Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaolei Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shuhua Luo
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dianqing Cao
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Youtan Liu
- The Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhengyuan Xia
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hanhui Zhong
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cuiping Chen
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liangqing Zhang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhifeng Liu
- The Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong, China.
| | - Jing Tang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
4
|
Du HB, Jiang SB, Zhao ZA, Zhang H, Zhang LM, Wang Z, Guo YX, Zhai JY, Wang P, Zhao ZG, Niu CY, Jiang LN. TLR2/TLR4-Enhanced TIPE2 Expression Is Involved in Post-Hemorrhagic Shock Mesenteric Lymph-Induced Activation of CD4+T Cells. Front Immunol 2022; 13:838618. [PMID: 35572554 PMCID: PMC9101470 DOI: 10.3389/fimmu.2022.838618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Post hemorrhagic shock mesenteric lymph (PHSML) return contributes to CD4+ T cell dysfunction, which leads to immune dysfunction and uncontrolled inflammatory response. Tumor necrosis factor α induced protein 8 like-2 (TIPE2) is one of the essential proteins to maintain the immune homeostasis. This study investigated the role of TIPE2 in regulation of CD4+ T lymphocyte function in interaction of PHSML and TLR2/TLR4. Methods The splenic CD4+ T cells were isolated from various mice (WT, TLR2-/-, TLR4-/-) by immunomagnetic beads, and stimulated with PHSML, normal lymphatic fluid (NML), respectively. Application of TIPE2-carrying interfering fragments of lentivirus were transfected to WT, TLR4-/-, and TLR2-/- CD4+ T cells, respectively. After interference of TIPE2, they were stimulated with PHSML and NML for the examinations of TIPE2, TLR2, and TLR4 mRNA expressions, proliferation, activation molecules on surface, and cytokine secretion function. Results PHSML stimulation significantly upregulated TIPE2, TLR2, and TLR4 mRNA expressions, decreased proliferation, CD25 expression, and IFN-γ secretion, and increased the secretion ability of IL-4 in WT CD4+ T cells. TIPE2 silencing enhanced proliferative capacity, upregulated CD25 expression, and increased IFNγ secretion in CD4+ T cells. PHSML stimulated TLR2-/-CD4+ T or TLR4-/-CD4+ T cells of which TIPE2 were silenced. TLR2 or TLR4 knockout attenuated PHSML-induced CD4+ T cells dysfunction; PHSML stimulation of silent TIPE2-expressing TLR2-/-CD4+ T or TLR4-/-CD4+ T revealed that the coexistence of low TIPE2 expression with lack of TLR2 or TLR4 eliminated this beneficial effect. Conclusion TIPE2 improves the PHSML-mediated CD4+T cells dysfunction by regulating TLR2/TLR4 pathway, providing a new intervention target following hemorrhagic shock-induced immune dysfunction.
Collapse
Affiliation(s)
- Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Sun-Ban Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Zhao Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Ya-Xiong Guo
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Jia-Yi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Peng Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Chun-Yu Niu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Na Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| |
Collapse
|
5
|
Liu SQ, Ren C, Yao RQ, Wu Y, Luan YY, Dong N, Yao YM. TNF-α-induced protein 8-like 2 negatively regulates the immune function of dendritic cells by suppressing autophagy via the TAK1/JNK pathway in septic mice. Cell Death Dis 2021; 12:1032. [PMID: 34718337 PMCID: PMC8557212 DOI: 10.1038/s41419-021-04327-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TIPE2) is a newly discovered negative immunoregulatory protein that is involved in various cellular immune responses to infections. However, the underlying mechanism by which TIPE2 affects the immune function of dendritic cells (DCs) is not yet understood. This study aimed to determine the correlations among DCs TIPE2 expression, autophagic activity and immune function in the context of sepsis. In addition, the signaling pathway by which TIPE2 regulates autophagy in DCs was investigated. We reported for the first time that TIPE2 overexpression (knock-in, KI) exerted an inhibitory effect on autophagy in DCs and markedly suppressed the immune function of DCs upon septic challenge both in vitro and in vivo. In addition, TIPE2 knockout (KO) in DCs significantly enhanced autophagy and improved the immune response of DCs in sepsis. Of note, we found that the transforming growth factor-β (TGF-β)-activated kinase-1 (TAK1)/c-Jun N-terminal kinase (JNK) pathway was inhibited by TIPE2 in DCs, resulting in downregulated autophagic activity. Collectively, these results suggest that TIPE2 can suppress the autophagic activity of DCs by inhibiting the TAK1/JNK signaling pathway and further negatively regulate the immune function of DCs in the development of septic complications.
Collapse
Affiliation(s)
- Shuang-Qing Liu
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, People's Republic of China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ying-Yi Luan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Wang F, Yao G, Pan S, Mao X, Zhao X, Li C, Hong Z, Liang G, Yu L, Hu X, Peng W. TIPE2-modified human amnion-derived mesenchymal stem cells promote the efficacy of allogeneic heart transplantation through inducing immune tolerance. J Thorac Dis 2021; 13:5064-5076. [PMID: 34527344 PMCID: PMC8411184 DOI: 10.21037/jtd-21-1034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022]
Abstract
Background Immune rejection of heart transplantation has been regarded as the biggest challenge encountered by a patient suffering from end-stage heart disease. The transplantation of human amnion-derived mesenchymal stem cells (hAD-MSCs) has exhibited promising application prospects in organ transplantation. However, its persistent unsatisfactory tolerance has limited the widespread application of this technology. We aim to investigate the role of tumor necrosis factor-α-induced protein-8 like-2 (TIPE2)-mediated hAD-MSCs in immune tolerance in heart transplantation and its molecular regulatory mechanisms. Methods This project detected the effect of TIPE2 on immune tolerance by constructing an allogeneic heart transplantation mouse model through which TIPE2-overexpressed hAD-MSCs were injected into recipients. The fluorescence distribution of TIPE2-hAD-MSCs in mice was observed by a small animal in vivo imaging system. Pathological changes of the transplanted heart were detected by hematoxylin and eosin (HE) staining. Flow cytometry was performed to detect the content of cardiac lymphocytes. The expression of immune-induced related factors was measured by quantitative real-time PCR (qRT-PCR) and western blot assays. Results TIPE2-hAD-MSCs protected myocardial tissue structures, reduced the spleen and thymus indexes in recipient mice, minimized the content of cardiac lymphocytes, reduced expressions of ERK, p38, and IFN-γ, and elevated expressions of both IL-10 and TGF-β, markedly improving the survival time and survival rates of recipient mice. Conclusions TIPE2-hAD-MSCs induce immune tolerance and improve the survival rates of allogeneic heart transplantation in mice. This study is expected to offer an ideal source and target of cells for organ transplantation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Cardiac Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guanping Yao
- Department of Guizhou Regenerative Medicine Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sisi Pan
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Xin Mao
- Department of Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Xu Zhao
- Department of Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Chuntian Li
- Department of Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Zheng Hong
- Department of Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Guiyou Liang
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Limei Yu
- Department of Guizhou Regenerative Medicine Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuanyi Hu
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wanfu Peng
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|