1
|
Cheng S, Chen W, Guo Z, Ding C, Zuo R, Liao Q, Liu G. Paeonol alleviates ulcerative colitis by modulating PPAR-γ and nuclear factor-κB activation. Sci Rep 2024; 14:18390. [PMID: 39117680 PMCID: PMC11310503 DOI: 10.1038/s41598-024-68992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the gastrointestinal tract. Although paeonol has been used for treating UC due to its anti-inflammatory and antioxidant effects, the underlying mechanisms remain unclear. In this study, we investigated the mechanisms of paeonol's action on UC by conducting in-vitro and in-vivo studies using NCM460 cells and RAW264.7 cells, and the DSS-induced mice colitis model. The in vitro studies demonstrate that paeonol exerts inhibitory effects on the activation of the NF-κB signaling pathway through upregulating PPARγ expression, thereby attenuating pro-inflammatory cytokine production, reducing reactive oxygen species levels, and promoting M2 macrophage polarization. These effects are significantly abrogated upon addition of the PPARγ inhibitor GW9662. Moreover, UC mice treated with paeonol showed increased PPARγ expression, which reduced inflammation and apoptosis to maintain intestinal epithelial barrier integrity. In conclusion, our findings suggest that paeonol inhibits the NF-κB signaling pathway by activating PPARγ, reducing inflammation and oxidative stress and improving Dss-induced colitis. This study provides a new insight into the mechanism of treating UC by paeonol.
Collapse
Affiliation(s)
- Shuyu Cheng
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wujin Chen
- The Third People's Hospital of Fujian Province, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Chenchun Ding
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Renjie Zuo
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Quan Liao
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guoyan Liu
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China.
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 350108, China.
| |
Collapse
|
2
|
Zheng S, Liang Y, Xue T, Wang W, Li S, Zhang P, Li X, Cao X, Liu Q, Qi W, Ye Y, Zao X. Application of network pharmacology in traditional Chinese medicine for the treatment of digestive system diseases. Front Pharmacol 2024; 15:1412997. [PMID: 39086391 PMCID: PMC11289720 DOI: 10.3389/fphar.2024.1412997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
With the general improvement in living standards in recent years, people's living habits, including their dietary habits, have changed. More people around the world do not follow a healthy diet, leading to an increase in morbidity and even mortality due to digestive system diseases, which shows an increasing trend every year. The advantage of traditional Chinese medicine (TCM) in treating digestive system diseases is evident. Consequently, the mechanisms of action of single Chinese herbs and compound Chinese medicines have become the focus of research. The research method of the network pharmacology system was highly consistent with the holistic concept of TCM, and provided a new perspective and theoretical basis for basic research on digestive system diseases. This article summarizes the common databases currently used in research on TCM. It also briefly introduces the basic methods and technologies of network pharmacology studies. It also summarizes the advancements of network pharmacology technology through a comprehensive literature search on PubMed. Based on this analysis, we further explored the role of TCM in treating digestive system diseases, including chronic gastritis, gastric cancer, ulcerative colitis, and liver cirrhosis. This study provides new ideas and references for treating digestive system diseases with TCM in the future and serves as a reference for relevant researchers.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yijun Liang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyu Xue
- First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyao Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Liu X, Ye M, He Y, Lai Q, Liu B, Zhang L. Investigation of Tongxie-Yaofang formula in treating ulcerative colitis based on network pharmacology via regulating MAPK/AKT signaling pathway. Aging (Albany NY) 2024; 16:1911-1924. [PMID: 38271090 PMCID: PMC10866423 DOI: 10.18632/aging.205467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a subtype of inflammatory bowel disease, which often leads to bloody diarrhea and abdominal pain. In this study, the function mechanism of Tongxie-Yaofang formula (TXYF) on UC was investigated. METHODS Action targets of TXYF were obtained by Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID) databases. The targets of UC were screened in Gene Cards and Online Mendelian Inheritance in Man (OMIM) databases. The network pharmacology of active ingredient targets was established via Cytoscape. RESULTS A total of 42 chemical components and 5806 disease targets were obtained. The GO functional analysis showed that biological processes such as oxidative stress and molecular response to bacteria, molecular function such as protein and nucleic acid binding activity were significantly enriched. The top 20 KEGG enriched signal pathways indicated that the targets were mainly linked with IL-17, TNF, HIF-1. Molecular docking results showed that naringenin had good binding activity between naringin and MAPK, albiflorin and SRC. The activity of MPO, the concentration of HIF-1, IL-17 and TNF-α were significantly decreased after TXYF treatment. The characteristics of UC such as crypt distortion, crypt atrophy, and increased basal plasmacytosis were also less observed with the treatment of TXYF. What's more, TXYF suppresses the phosphorylation of SRC, MAPK and AKT1 in UC. CONCLUSIONS TXYF showed treatment effect on UC through multiple components and multiple targets, which lays a foundation for further study of UC treatment.
Collapse
Affiliation(s)
- Xinhong Liu
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Mao Ye
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Yinglin He
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Qin Lai
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Bo Liu
- Department of Proctology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Leichang Zhang
- Formula-Pattern Research Center of Traditional Chinese Medicine, Nanchang 330000, China
| |
Collapse
|
4
|
Wang M, Fu R, Xu D, Chen Y, Yue S, Zhang S, Tang Y. Traditional Chinese Medicine: A promising strategy to regulate the imbalance of bacterial flora, impaired intestinal barrier and immune function attributed to ulcerative colitis through intestinal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116879. [PMID: 37419224 DOI: 10.1016/j.jep.2023.116879] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Globally, plant materials are widely used as an additional and alternative therapy for the treating of diverse diseases. Ulcerative colitis (UC) is a chronic, recurrent and nonspecific inflammation of the bowel, referred to as "modern intractable disease" according to the World Health Organization. With the continuous development of theoretical research in Traditional Chinese Medicine (TCM) and the advantages of TCM in terms of low side effects, TCM has shown great progress in the research of treating UC. AIM OF THIS REVIEW This review aimed to explore the correlation between intestinal microbiota and UC, summarize research advances in TCM for treating UC, and discuss the mechanism of action of TCM remedies in regulating intestinal microbiota and repairing damaged intestinal barrier, which will provide a theoretical basis for future studies to elucidate the mechanism of TCM remedies based on gut microbiota and provide novel ideas for the clinical treatment of UC. METHODS We have collected and collated relevant articles from different scientific databases in recent years on the use of TCM in treating UC in relation to intestinal microecology. Based on the available studies, the therapeutic effects of TCM are analysed and the correlation between the pathogenesis of UC and intestinal microecology is explored. RESULTS TCM is used to further protect the intestinal epithelium and tight junctions, regulate immunity and intestinal flora by regulating intestinal microecology, thereby achieving the effect of treating UC. Additionally, TCM remedies can effectively increase the abundance of beneficial bacteria that produce short-chain fatty acids, decrease the abundance of pathogenic bacteria, restore the balance of intestinal microbiota, and indirectly alleviate intestinal mucosal immune barrier dysfunction and promote the repair of damaged colorectal mucosa. CONCLUSION Intestinal microbiota is closely related to UC pathogenesis. The alleviation of intestinal dysbiosis can be a potential novel therapeutic strategy for UC. TCM remedies can exert protective and therapeutic effects on UC through various mechanisms. Although intestinal microbiota can aid in the identification of different TCM syndromes types, further studies are needed using modern medical technology. This will improve the clinical therapeutic efficacy of TCM remedies in UC and promote the application of precision medicine.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Ruijia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yanyan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Sai Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| |
Collapse
|
5
|
Li X, Du Y, Huang S, Yang Y, Lu D, Zhang J, Chen Y, Zhang L, Nan Y, Yuan L. Exploring the molecular mechanism of glycyrrhetinic acid in the treatment of gastric cancer based on network pharmacology and experimental validation. Aging (Albany NY) 2023; 15:3839-3856. [PMID: 37171392 PMCID: PMC10449304 DOI: 10.18632/aging.204718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
There is a wide range of pharmacological effects for glycyrrhetinic acid (GRA). Previous studies have shown that GRA could inhibit the proliferation of tumor cells, showing a promising value in the treatment of gastric cancer (GC). Nonetheless, the precise mechanism of the effect of GRA on GC remains unclear. We explored cellular and molecular mechanisms of GRA based on network pharmacology and in vitro experimental validation. In this study, we predicted 156 potential therapeutic targets for GC with GRA from public databases. We then screened the hub targets using protein-protein interaction network (PPI) and conducted clinical correlation analysis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that GRA made anti-GC effects through multiple targets and pathways, particularly the MAPK signaling pathway. Next, molecular docking results revealed a potential interaction between GRA and MAPK3. In addition, qRT-PCR experiments revealed that 18β-GRA was able to suppress mRNA expression of KRAS, ERK1 and ERK2 in AGS cells. Western blotting results also revealed that 18β-GRA was able to suppress the expression of KRAS and p-ERK1/2 proteins in AGS cells. Additionally, immunofluorescence assays revealed that 18β-GRA inhibited p-ERK1/2 nuclear translocation in AGS cells. These results systematically reveal that 18β-GRA may have anti-tumor effects on GC by modulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Xia Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Doudou Lu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Junfei Zhang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan Chen
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lei Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
6
|
Liu H, Tang J, Chen T, Zhu P, Sun D, Wang W. Assessment of heavy metals contamination and human health risk assessment of the commonly consumed medicinal herbs in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7345-7357. [PMID: 36040690 DOI: 10.1007/s11356-022-22647-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This study investigates heavy metal contamination of commonly consumed medicinal herbs and human health risks to the Chinese population arising from the consumption of herbs that contain potentially harmful elements. Food safety standards for Chinese residents are becoming stricter, and much work in this field needs to be performed. This study examines Co, Ba, Fe, Cr, Mn, Ni, Zn, As, Cd, Pb, Cu, Be, Sb, and Bi concentrations in four regularly consumed Chinese herb species: Radix Paeoniae Alba (RPA), Radix Angelicae Dahuricae (RAD), Rhizoma Atractylodis Macrocephalae (RAM), and Radix Puerariae (RP). A pollution status examination and evaluation of heavy metals in RPA, RAD, RAM, and RP were performed. The human health risk assessment associated with the intake of potentially harmful elements in herbs was calculated in terms of the estimated daily intake (EDI), the target hazard quotient (THQ), the estimated hazard index (HI), and the lifetime cancer risk (CR). The mean single-factor pollution index (PI) showed that in the RPA, RAD, RAM, and RP samples, approximately 10.0%, 10.0%, 30.0%, and 10.0%, respectively, were polluted by Cd. The present study indicated that the pattern of consumption of the studied herbs in China does not seem to suggest an excessive health hazard associated with any of the toxic elements studied.
Collapse
Affiliation(s)
- Haiping Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Tongjun Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Pingping Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
7
|
Lv S, Zhao Y, Wang L, Yu Y, Li J, Huang Y, Xu W, Sun G, Dai W, Zhao T, Bi D, Ma Y, Sun P. Antidepressant Active Components of Bupleurum chinense DC-Paeonia lactiflora Pall Herb Pair: Pharmacological Mechanisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1024693. [PMID: 36408279 PMCID: PMC9668458 DOI: 10.1155/2022/1024693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2024]
Abstract
Depression is a serious psychological disorder with a rapidly increasing incidence in recent years. Clinically, selective serotonin reuptake inhibitors are the main therapy. These drugs, have serious adverse reactions, however. Traditional Chinese medicine has the characteristics of multiple components, targets, and pathways, which has huge potential advantages for the treatment of depression. The antidepressant potential of the herbal combination of Bupleurum chinense DC (Chaihu) and Paeonia lactiflora Pall (Baishao) has been extensively studied previously. In this review, we summarized the antidepressant active components and mechanism of Chaihu-Baishao herb pair. We found that it works mainly through relieving oxidative stress, regulating HPA axis, and protecting neurons. Nevertheless, current research of this combined preparation still faces many challenges. On one hand, most of the current studies only stay at the level of animal models, lacking of sufficient clinical double-blind controlled trials for further verification. In addition, studies on the synergistic effect between different targets and signaling pathways are scarce. On the other hand, this preparation has numerous defects such as poor stability, low solubility, and difficulty in crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Shimeng Lv
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yifan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Le Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yihong Yu
- School of Management, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiaxin Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yufei Huang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Wenhua Xu
- Preventive Treatment Center, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen 518027, China
| | - Geqin Sun
- Zhongshan Torch Development Zone People's Hospital, Zhongshan 528400, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan 528400, China
| | - Tingting Zhao
- School of Foreign Language, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dezhong Bi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Sun
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
8
|
Lv S, Dai W, Zheng Y, Dong P, Yu Y, Zhao Y, Sun S, Bi D, Liu C, Han F, Wu J, Zhao T, Ma Y, Zheng F, Sun P. Anxiolytic effect of YangshenDingzhi granules: Integrated network pharmacology and hippocampal metabolomics. Front Pharmacol 2022; 13:966218. [PMID: 36386232 PMCID: PMC9659911 DOI: 10.3389/fphar.2022.966218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2023] Open
Abstract
Anxiety disorder is one of the most common mental diseases. It is mainly characterized by a sudden, recurring but indescribable panic, fear, tension and/or anxiety. Yangshendingzhi granules (YSDZ) are widely used in the treatment of anxiety disorders, but its active ingredients and underlying mechanisms are not yet clear. This study integrates network pharmacology and metabolomics to investigate the potential mechanism of action of YSDZ in a rat model of anxiety. First, potential active ingredients and targets were screened by network pharmacology. Then, predictions were verified by molecular docking, molecular dynamics and western blotting. Metabolomics was used to identify differential metabolites and metabolic pathways. All results were integrated for a comprehensive analysis. Network pharmacology analysis found that Carotene, β-sitosterol, quercetin, Stigmasterol, and kaempferol in YSDZ exert anxiolytic effects mainly by acting on IL1β, GABRA1, PTGS1, ESR1, and TNF targets. Molecular docking results showed that all the affinities were lower than -5 kcal/mol, and the average affinities were -7.7764 kcal/mol. Molecular dynamics simulation results showed that RMSD was lower than 2.5 A, and the overall conformational changes of proteins were small, indicating that the small molecules formed stable complexes with proteins. The results of animal experiments showed that YSDZ exerts anxiolytic effects by regulating GABRA1 and TNF-α, ameliorating pathological damage in hippocampal CA1, and regulating metabolic pathways such as thiamine, cysteine and methionine metabolism, lysine biosynthesis and degradation. Altogether, we reveal multiple mechanisms through which YSDZ exerts its anti-anxiety effects, which may provide a reference for its clinical application and drug development.
Collapse
Affiliation(s)
- Shimeng Lv
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhong Shan, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ping Dong
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yihong Yu
- School of Management, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiguang Sun
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dezhong Bi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fabin Han
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhao
- School of Foreign Language, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Peng Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Zheng S, Xue T, Wang B, Guo H, Liu Q. Application of network pharmacology in the study of mechanism of Chinese medicine in the treatment of ulcerative colitis: A review. FRONTIERS IN BIOINFORMATICS 2022; 2:928116. [PMID: 36304327 PMCID: PMC9580908 DOI: 10.3389/fbinf.2022.928116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Network pharmacology is a research method based on a multidisciplinary holistic analysis of biological systems, which coincides with the idea of the holistic view of traditional Chinese medicine. In this review, we summarized the use of network pharmacology technology through studying Chinese medicine single medicine or Chinese medicine compound research ideas and methods for the treatment of ulcerative colitis, based on the application of the current network pharmacology in Chinese medicine research, including the important role in the mechanism of the prediction and verification, to search for new ideas for disease diagnosis and treatment, this study summarizes the application of network pharmacology in the treatment of ulcerative colitis in traditional Chinese medicine, including monotherapy and compound therapy, and considers that relevant research studies have fully demonstrated the function characteristics of the multi-component, multi-target, and multi-pathway of traditional Chinese medicine, and can also explain the connotation of “selecting appropriate treatment methods according to the differences and similarities of pathogenesis” of traditional Chinese medicine. Finally, we raised important questions about the prospects and limitations of network pharmacology, such as differences caused by different data collection methods, a considerable lag, and so on.
Collapse
Affiliation(s)
- Shihao Zheng
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Tianyu Xue
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Bin Wang
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Haolin Guo
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Qiquan Liu
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
- Department of Spleen and Stomach, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
- *Correspondence: Qiquan Liu,
| |
Collapse
|
10
|
Zhang A, Zou Y, Xu Q, Tian S, Wang J, Li Y, Dong R, Zhang L, Jiang J, Wang L, Tao K, Meng Z, Liu Y. Investigation of the Pharmacological Effect and Mechanism of Jinbei Oral Liquid in the Treatment of Idiopathic Pulmonary Fibrosis Using Network Pharmacology and Experimental Validation. Front Pharmacol 2022; 13:919388. [PMID: 35784749 PMCID: PMC9240387 DOI: 10.3389/fphar.2022.919388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Overview: Idiopathic pulmonary fibrosis (IPF) is a disease caused by many factors, eventually resulting in lung function failure. Jinbei oral liquid (JBOL) is a traditional Chinese clinical medicine used to treat pulmonary diseases. However, the pharmacological effects and mechanism of the action of JBOL on IPF remain unclear. This study investigated the protective effects and mechanism of the action of JBOL on IPF using network pharmacology analysis, followed by in vivo and in vitro experimental validation. Methods: The components of JBOL and their targets were screened using the TCMSP database. IPF-associated genes were obtained using DisGeNET and Drugbank. The common targets of JBOL and IPF were identified with the STRING database, and a protein-protein interaction (PPI) network was constructed. GO and KEGG analyses were performed. Sprague-Dawley rats were injected with bleomycin (BLM) to establish an IPF model and treated orally with JBOL at doses of 5.4, 10.8, and 21.6 ml/kg. A dose of 54 mg/kg of pirfenidone was used as a control. All rats were treated for 28 successive days. Dynamic pulmonary compliance (Cdyn), minute ventilation volume (MVV), vital capacity (VC), and lung resistance (LR) were used to evaluate the efficacy of JBOL. TGF-β-treated A549 cells were exposed to JBOL, and epithelial-to-mesenchymal transition (EMT) changes were assessed. Western blots were performed. Results: Two hundred seventy-eight compounds and 374 targets were screened, and 103 targets related to IPF were identified. Core targets, including MAPK1 (ERK2), MAPK14 (p38), JUN, IL-6, AKT, and others, were identified by constructing a PPI network. Several pathways were involved, including the MAPK pathway. Experimentally, JBOL increased the levels of the pulmonary function indices (Cdyn, MVV, and VC) in a dose-dependent manner and reduced the RL level in the BLM-treated rats. JBOL increased the epithelial marker E-cadherin and suppressed the mesenchymal marker vimentin expression in the TGF-β-treated A549 cells. The suppression of ERK1/2, JNK, and p38 phosphorylation by JBOL was validated. Conclusion: JBOL had therapeutic effects against IPF by regulating pulmonary function and EMT through a systemic network mechanism, thus supporting the need for future clinical trials of JBOL.
Collapse
Affiliation(s)
- Aijun Zhang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Yixuan Zou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingcui Xu
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renchao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangzong Zhang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Juanjuan Jiang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Lili Wang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Kai Tao
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Zhaoqing Meng
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Yanqiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Song Y, Chang L, Wang X, Tan B, Li J, Zhang J, Zhang F, Zhao L, Liu G, Huo B. Regulatory Mechanism and Experimental Verification of Patchouli Alcohol on Gastric Cancer Cell Based on Network Pharmacology. Front Oncol 2021; 11:711984. [PMID: 34540679 PMCID: PMC8440821 DOI: 10.3389/fonc.2021.711984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pogostemon cablin is a traditional Chinese medicine (TCM) that is frequently used to treat various gastrointestinal diseases. Patchouli alcohol (PA), a compound extracted from the Pogostemon cablin, has been shown to have anti-tumor efficacy in human colorectal cancer. However, the mechanism of PA’s anticancer effect on gastric cancer (GC) remains unknown. Methods We used the public database to obtain the potential targets of PA and genes related to GC. Bioinformatic analyses, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and protein-protein interactions (PPI), were used for analyzing the potential signal pathways and targets. Cell experiments were also conducted to further explain the impact and molecular mechanism of PA on GC, as well as to confirm the findings of network pharmacology. Results Using network pharmacological analysis, 161 possible targets were identified for the treatment of GC. Network analysis and functional enrichment analysis show that PA produced a marked effect in the treatment of GC through multi-targets and multi-pathways, especially the MAPK and PI3K/AKT signal pathways. In addition, PA showed the inhibition of GC cell proliferation, migration and invasion in cell experiments. According to our findings, PA could also cause G0/G1 phase arrest and apoptosis in GC cells. Conclusion Using network pharmacology, we aim to uncover the possible molecular mechanism of PA on GC treatment in this research. Cell experiments were also conducted to confirm the therapeutic effect of PA on GC.
Collapse
Affiliation(s)
- Yanru Song
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Chang
- Department of Basic Theory of Traditional Chinese Medicine of Basic Medical Science College, HeBei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoyuan Wang
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bibo Tan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianbo Li
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhang
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fengbin Zhang
- Department of Gastroenterology Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangjie Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bingjie Huo
- Department of Traditional Chinese Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Kim JH, Kim M, Hong S, Kim EY, Lee H, Jung HS, Sohn Y. Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures Through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Front Pharmacol 2021; 12:690113. [PMID: 34349649 PMCID: PMC8327266 DOI: 10.3389/fphar.2021.690113] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Fracture healing is related to osteogenic differentiation and mineralization. Recently, due to the unwanted side effects and clinical limitations of existing treatments, various natural product-based chemical studies have been actively conducted. Albiflorin is a major ingredient in Paeonia lactiflora, and this study investigated its ability to promote osteogenic differentiation and fracture healing. To demonstrate the effects of albiflorin on osteoblast differentiation and calcified nodules, alizarin red S staining and von Kossa staining were used in MC3T3-E1 cells. In addition, BMP-2/Smad and Wnt/β-catenin mechanisms known as osteoblast differentiation mechanisms were analyzed through RT-PCR and western blot. To investigate the effects of albiflorin on fracture healing, fractures were induced using a chainsaw in the femur of Sprague Dawley rats, and then albiflorin was intraperitoneally administered. After 1, 2, and 3 weeks, bone microstructure was analyzed using micro-CT. In addition, histological analysis was performed by staining the fractured tissue, and the expression of osteogenic markers in serum was measured. The results demonstrated that albiflorin promoted osteoblastogenesis and the expression of RUNX2 by activating BMP-2/Smad and Wnt/β-catenin signaling in MC3T3-E1 cells. In addition, albiflorin upregulated the expression of various osteogenic genes, such as alkaline phosphatase, OCN, bone sialoprotein, OPN, and OSN. In the femur fracture model, micro-CT analysis showed that albiflorin played a positive role in the formation of callus in the early stage of fracture recovery, and histological examination proved to induce the expression of osteogenic genes in femur tissue. In addition, the expression of bone-related genes in serum was also increased. This suggests that albiflorin promotes osteogenesis, bone calcification and bone formation, thereby promoting the healing of fractures in rats.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - SooYeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyangsook Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
13
|
Uncovering the Mechanism of Curcuma in the Treatment of Ulcerative Colitis Based on Network Pharmacology, Molecular Docking Technology, and Experiment Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6629761. [PMID: 34221084 PMCID: PMC8225429 DOI: 10.1155/2021/6629761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/22/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022]
Abstract
Aim The incidence of ulcerative colitis (UC) is increasing steadily in developed countries, it is plaguing nearly 1 million people in the United States and European countries, while developing countries have had a rapidly increased incidence over the past decades. Curcuma is widely used in treating malaria, UC, Crohn's disease, and colon cancer, which lead to diarrhea and bloody stool. However, the systemic mechanism of curcuma in treating UC is still unclear. Our work was supposed to expound how does curcuma alleviate UC in a comprehensive and systematic way by network pharmacology, molecular docking, and experiment verification. Methods Traditional Chinese Medicine System Pharmacology Database (TCMSP), Shanghai Chemistry & Chemical Industry Data Platform (SGST), and papers published in Chinese Network Knowledge Infrastructure (CNKI) and PubMed were used to collect the chemical constituents of curcuma based on ADME (absorption, distribution, metabolism, and excretion). And effective targets were predicted by Swiss Target Prediction to establish the curcuma-related database. The disease targets of UC were screened by GeneCards and DrugBank databases, and Wayne (Venn) analysis was carried out with curcuma targets to determine the intersection targets. AutoDock software and TCMNPAS system were used to dock the core chemical components of curcuma with key UC targets. Protein interaction (PPI) network was constructed based on the STRING database and Cytoscape software. Gene function GO analysis and KEGG pathway enrichment analysis were carried out by using Metascape database. Finally, HE staining was performed to identify the inflammatory infiltration and expression difference in TNF-α and STAT3 before and after the treatment of curcuma which was verified by immunoblotting. Results Twelve active components containing 148 target genes were selected from curcuma. Potential therapeutic targets of curcuma in the treatment of UC were acquired from 54 overlapped targets from UC and curcuma. Molecular docking was used to filter the exact 24 core proteins interacting with compounds whose docking energy is lower than -5.5 and stronger than that of 5-aminosalicylic acid (5-ASA). GO and KEGG analyses showed that these targets were highly correlated with EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, MAPK signaling pathway, and inflammatory bowel disease (IBD). Experiments verified curcuma relieved pathological manifestation and decreased the expression of TNF-α and STAT3. Conclusion Curcuma relieved the colon inflammation of ulcerative colitis via inactivating TNF pathway, inflammatory bowel disease pathway, and epithelial cell signaling in Helicobacter pylori infection pathway, probably by binding to STAT3 and TNF-α.
Collapse
|
14
|
Molecular Targets and Mechanisms of Scutellariae radix- Coptidis rhizoma Drug Pair for the Treatment of Ulcerative Colitis Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9929093. [PMID: 34149863 PMCID: PMC8195671 DOI: 10.1155/2021/9929093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
This study aims to analyze the targets of the effective active ingredients of Scutellariae radix-Coptidis rhizoma drug pair (SCDP) in ulcerative colitis (UC) by network pharmacology and molecular docking and to explore the associated therapeutic mechanism. The effective active ingredients and targets of SCDP were determined from the TCMSP database, and the drug ingredient-target network was constructed using the Cytoscape software. The disease targets related to UC were searched in GeneCards, DisGeNET, OMIM, and DrugBank databases. Then, the drug ingredient and disease targets were intersected to construct a protein-protein interaction network through the STRING database. The Metascape database was used for the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the predicted targets of SCDP for UC. The Autodock software was used for molecular docking between the main active ingredient and the core target to evaluate the binding ability. SCDP has 43 effective active ingredients and 134 intersection targets. Core targets included AKT1, TP53, IL-6, VEGFA, CASP3, JUN, TNF, MYC, EGFR, and PTGS2. GO functional enrichment analysis showed that biological process was mainly associated with a cytokine-mediated signaling pathway, response to an inorganic substance, response to a toxic substance, response to lipopolysaccharide, reactive oxygen species metabolic process, positive regulation of cell death, apoptotic signaling pathway, and response to wounding. KEGG enrichment analysis showed main pathway concentrations were related to pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, bladder cancer, IL-17 signaling pathway, apoptosis, p53 signaling pathway, and PI3K-Akt signaling pathway. The drug active ingredient-core target-key pathway network contains 41 nodes and 108 edges, of which quercetin, wogonin, baicalein, acacetin, oroxylin A, and beta-sitosterol are important active ingredients; PTGS2, CASP3, TP53, IL-6, TNF, and AKT1 are important targets; and the pathways involved in UC treatment include pathways in cancer, PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic, apoptosis, IL-17 signaling pathway and herpes simplex infection. The active ingredient has a good binding capacity to the core target. SCDP key active ingredients are mainly quercetin, wogonin, baicalein, acacetin, oroxylin A, and beta-sitosterol, which function mainly by regulating targets, such as PTGS2, CASP3, TP53, IL-6, TNF, and AKT1, and are associated with multiple signaling pathways as pathways in cancer, PI3K-Akt signaling pathway, apoptosis, IL-17 signaling pathways.
Collapse
|
15
|
Li J, Li L, Wang Y, Zhao Y, Hu P, Xu Z, Liu F, Liang Q, Tian X, Huang C. Systematic investigation on the anti-rheumatoid arthritis material basis and mechanism of Juan Bi Tang. Part 1: Integrating metabolic profiles and network pharmacology. J Pharm Biomed Anal 2021; 202:114133. [PMID: 34051482 DOI: 10.1016/j.jpba.2021.114133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
Previously, our cooperative team confirmed the chemical composition and anti-rheumatoid arthritis (RA) efficacy of Juanbi-Tang (JBT), a clinically and historically used traditional Chinese medicine formula, in two model animals. In this study, we developed an in vivo-in silico strategy to elucidate the anti-RA material basis and mechanism of JBT. With the aid of high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF), the metabolic profiles were investigated in normal and collagen-induced arthritis RA rats following oral administration of JBT. Based on the absorbed constituents in RA rats, network pharmacology was employed to predict the anti-RA mechanisms, followed by molecular docking validation. Consequently, there were 18 absorbed compounds with 6 chemical structures, which were absolutely identified by matching with standard compounds in plasma, and 17 generated metabolites involved of 7 biotransformation pathways, including glucuronidation, sulfation, hydroxylation, deglycosylation, methylation, taurine, and glycine conjugation. Moreover, RA disease affected the absorption and metabolism of the constituents in JBT, given the undetected 2 absorbed compounds and 4 metabolites in RA rats. The analysis of network pharmacology indicated that those absorbed compounds in JBT may fight against RA through the MAPK, FoxO, and Rap1 pathways. Molecular docking also validated these results. Overall, this is the first study to describe the metabolic profiles of JBT-treated healthy and RA rats, and it provides a possible anti-RA mechanism through multiple absorbed compounds and targets by network pharmacology.
Collapse
Affiliation(s)
- Jiajia Li
- Shenyang University of Chemical Technology, Shenyang, 110142, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201203, China
| | - Lei Li
- Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yangyang Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201203, China
| | - Yuxuan Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201203, China
| | - Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201203, China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201203, China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201203, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201203, China.
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201203, China.
| |
Collapse
|
16
|
Li Q, Hu S, Huang L, Zhang J, Cao G. Evaluating the Therapeutic Mechanisms of Selected Active Compounds in Cornus Officinalis and Paeonia Lactiflora in Rheumatoid Arthritis via Network Pharmacology Analysis. Front Pharmacol 2021; 12:648037. [PMID: 33967784 PMCID: PMC8097135 DOI: 10.3389/fphar.2021.648037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/18/2021] [Indexed: 11/18/2022] Open
Abstract
Cornus officinalis Sieb et. Zucc and Paeonia lactiflora Pall. have exhibited favorable therapeutic effects against rheumatoid arthritis (RA), but the specific mechanisms of their active compounds remain unclear. The aim of this study was to comprehensively analyze the therapeutic mechanisms of selected active compounds in Cornus officinalis (loganin, ursolic acid, and morroniside) and Paeonia lactiflora (paeoniflorin and albiflorin) via network pharmacology. The pharmacological properties of the five active compounds were evaluated and their potential target genes were identified by database screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analysis were performed to determine the enriched molecular pathways associated with the active compounds. Using network pharmacology tools, eight genes (IL1β, VEGFA, STAT3, TP53, IL6, TNF, FOS, and LGALS3) were identified as common targets between RA and the five active compounds. Molecular docking simulation revealed the compound-target relationship between the five active compounds and three selected targets from the eight common ones (LGALS3, STAT3, and VEGFA). The compound-target relationships were subsequently validated via preliminary in vivo experiments in a rat model of collagen-induced arthritis. Rats subjected to collagen-induced arthritis showed increased protein expression of LGALS3, STAT3, and VEGFA in synovial tissues. However, treatment using Cornus officinalis or/and Paeonia lactiflora, as well as their most drug-like active compounds (ursolic acid or/and paeoniflorin, respectively, identified based on pharmacological properties), attenuated the expression of these three targets, as previously predicted. Collectively, network pharmacology allowed the pharmacological and molecular roles of Cornus officinalis and Paeonia lactiflora to be systematically revealed, further establishing them as important candidate drugs in the treatment and management of RA.
Collapse
Affiliation(s)
- Qinglin Li
- Scientific Research Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shaoqi Hu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lichuang Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jida Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
17
|
Wu N, Du X, Peng Z, Zhang Z, Cui L, Li D, Wang R, Ma M. Silencing of peroxiredoxin 1 expression ameliorates ulcerative colitis in a rat model. J Int Med Res 2021; 49:300060520986313. [PMID: 33682513 PMCID: PMC7944532 DOI: 10.1177/0300060520986313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Peroxiredoxin 1 (PRDX1), a protein with anti-inflammatory and anti-apoptotic properties, shows elevated expression in ulcerative colitis (UC). However, PRDX1's specific role in UC is poorly understood. Methods UC was induced in rats using dextran sulfate sodium (DSS). In vivo RNA interference was used to silence the PRDX1 expression. PRDX1 expression levels and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β and interferon (IFN)-γ in tissues were assessed by real-time quantitative polymerase chain reaction and western blotting. Colonic injury was assessed by hematoxylin–eosin staining. ELISA was used to assess levels of the inflammatory cytokines TNF-α, IL-1β and IL-6 in colon tissues. Apoptosis of intestinal epithelial cells was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling, and expression of the apoptotic proteins bcl-2, Bax, cleaved caspase-3 and caspase-3 was assessed by western blotting. Results PRDX1 expression was significantly increased in rats with DSS-induced UC. Silencing of PRDX1 expression improved colon injury in rats with DSS-induced UC. In addition, silencing of PRDX1 expression inhibited inflammatory responses and apoptosis of intestinal epithelial cells in rats with DSS-induced UC. Conclusions Silencing of PRDX1 expression can ameliorate colon injury in rats with DSS-induced UC.
Collapse
Affiliation(s)
- Na Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xinchong Du
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Zhao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Zetian Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Lijun Cui
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Duo Li
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Rui Wang
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Maoyuan Ma
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
18
|
Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology. Sci Rep 2021; 11:1005. [PMID: 33441867 PMCID: PMC7806711 DOI: 10.1038/s41598-020-80297-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Inflammation, a protective response against infection and injury, involves a variety of biological processes. Sophorae Flavescentis (Kushen) is a promising Traditional Chinese Medicine (TCM) for treating inflammation, but the pharmacological mechanism of Kushen’s anti-inflammatory effect has not been fully elucidated. The bioactive compounds, predicted targets, and inflammation-related targets of Kushen were obtained from open source databases. The “Component-Target” network and protein–protein interaction (PPI) network were constructed, and hub genes were screened out by topological analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on genes in the PPI network. Furthermore, nitric oxide (NO) production analysis, RT-PCR, and western blot were performed to detect the mRNA and protein expression of hub genes in LPS-induced RAW264.7 cells. An immunofluorescence assay found that NF-κB p65 is translocated. A total of 24 bioactive compounds, 465 predicted targets, and 433 inflammation-related targets were identified and used to construct “Component-Targets” and PPI networks. Then, the five hub genes with the highest values-IL-6, IL-1β, VEGFA, TNF-α, and PTGS2 (COX-2)- were screened out. Enrichment analysis results suggested mainly involved in the NF-κB signaling pathway. Moreover, experiments were performed to verify the predicted results. Kushen may mediate inflammation mainly through the IL-6, IL-1β, VEGFA, TNF-α, and PTGS2 (COX-2), and the NF-κB signaling pathways. This finding will provide clinical guidance for further research on the use of Kushen to treat inflammation.
Collapse
|
19
|
Lin W, Wu Y, Wang J, Lin H, Xu X, He G, He B, Ma X. Network Pharmacology Study of the Hepatoprotective Effects of Quercetin-Containing Traditional Chinese Medicine, Anoectochilus roxburghii, and Validation of Quercetin as an Anti-Liver Injury Agent in a Mouse Model of Liver Injury. Med Sci Monit 2020; 26:e923533. [PMID: 33325451 PMCID: PMC7751255 DOI: 10.12659/msm.923533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Anoectochilus roxburghii (Orchidaceae) (AR) has been widely used to treat liver injury in China, but its underlying mechanisms remain elusive. Network pharmacology was utilized to assess the hepatoprotective effects of quercetin (Que)-containing AR, and to validate the anti-liver injury effects of Que in a mouse model of liver injury. Material/Methods Network pharmacology analysis was performed to determine bio-active compounds in AR. The core therapeutic targets of AR against liver injury were identified using a protein–protein interaction network. Biological function and pathway enrichment were analyzed based on the identified core therapeutic targets. The hepatoprotective effects of Que in a mouse model of liver injury induced by CCl4 were assessed to verify the reliability of network pharmacology analysis. Results Seven bio-active compounds of AR met drug screening criteria and 17 core therapeutic targets of AR against liver injury were identified. Biological function analysis demonstrated that the therapeutic effects of AR against liver injury were chiefly associated with the suppression of inflammation and immunity; and pathway enrichment analysis showed that nuclear factor-kappa B (NF-κB) and tumor necrosis factor (TNF) signaling pathways were associated with the inflammatory responses. Experimental validation in a mouse model showed that AR exerted anti-inflammatory effects by regulating the NF-κB signaling pathway, a finding that also confirmed the reliability of network pharmacology analysis. Conclusions The bio-active compounds identified in AR and the elucidation of their mechanisms of action against liver injury provide a theoretical basis for designing agents that can prevent or suppress liver injury.
Collapse
Affiliation(s)
- Wei Lin
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland).,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland)
| | - Yuhan Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland)
| | - Jingjing Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland)
| | - Han Lin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland)
| | - Xiuming Xu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland)
| | - Guanrong He
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland)
| | - Bizhu He
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland).,College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland)
| | - Xiaokai Ma
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland).,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
20
|
Zhang J, Liu X, Zhou W, Cheng G, Wu J, Guo S, Jia S, Liu Y, Li B, Zhang X, Wang M. A bioinformatics investigation into molecular mechanism of Yinzhihuang granules for treating hepatitis B by network pharmacology and molecular docking verification. Sci Rep 2020; 10:11448. [PMID: 32651427 PMCID: PMC7351787 DOI: 10.1038/s41598-020-68224-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Yinzhihuang granules (YZHG) is a patented Chinese medicine for the treatment of hepatitis B. This study aimed to investigate the intrinsic mechanisms of YZHG in the treatment of hepatitis B and to provide new evidence and insights for its clinical application. The chemical compounds of YZHG were searched in the CNKI and PUBMED databases, and their putative targets were then predicted through a search of the SuperPred and Swiss Target Prediction databases. In addition, the targets of hepatitis B were obtained from TTD, PharmGKB and DisGeNET. The abovementioned data were visualized using Cytoscape 3.7.1, and network construction identified a total of 13 potential targets of YZHG in the treatment of hepatitis B. Molecular docking verification showed that CDK6, CDK2, TP53 and BRCA1 might be strongly correlated with hepatitis B treatment. Furthermore, GO and KEGG analyses indicated that the treatment of hepatitis B by YZHG might be related to positive regulation of transcription, positive regulation of gene expression, the hepatitis B pathway and the viral carcinogenesis pathway. Network pharmacology intuitively shows the multicomponent, multitarget and multichannel pharmacological effects of YZHG in the treatment of hepatitis B and provides a scientific basis for its mechanism of action.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xinkui Liu
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wei Zhou
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000, China
| | - Jiarui Wu
- Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Siyu Guo
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shanshan Jia
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yingying Liu
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Bingbing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000, China
| | - Xiaomeng Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Miaomiao Wang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| |
Collapse
|
21
|
Exploring Mechanism of Key Chinese Herbal Medicine on Breast Cancer by Data Mining and Network Pharmacology Methods. Chin J Integr Med 2020; 27:919-926. [PMID: 32572780 DOI: 10.1007/s11655-020-3422-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To screen the key Chinese Herbal Medicines (KCHMs) against breast cancer by data mining, and analyze the potential mechanism of KCHMs using network pharmacology method. METHODS Clinical prescriptions consisted of CHMs for treating breast cancer were screened, and then Traditional Chinese Medicine Inheritance Support System (TCMISS) was applied to obtain the KCHMs. Subsequently, active ingredients and corresponding target genes of KCHMs were searched by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and target genes of breast cancer were collected using OMIM and MalaCards. After that, the overlapping target genes of KCHMs and breast cancer were screened, and the protein-protein interaction (PPI) network was built. In addition, a network of "KCHMs-active ingredients-breast cancer-targets" was constructed by Cytoscape 3.7.1. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were performed with Database for Annotation, Visualization and Integrated Discovery (DAVID) database to reveal the action mechanism of KCHMs. RESULTS A total of 7 KCHMs were identified, whose active ingredients include quercetin, luteolin, nobiletin, kaempferol, isorhamnetin, naringenin, and be-ta-sitosterol, etc. Based on protein-protein interaction analysis, core targets were ESR1, MYC, CCND1, EGFR, CASP3, ERBB2, etc. Several KEGG pathways (e.g, PI3K-Akt, p53, ErbB, and HIF-1 signaling pathways) were found. CONCLUSION Based on the combination of the data mining method and network pharmacology approach, the therapeutic effect of KCHMs on breast cancer may be realized by acting on target genes and signaling pathways related to the formation and progression of breast cancer.
Collapse
|
22
|
Zhang SQ, Xu HB, Zhang SJ, Li XY. Identification of the Active Compounds and Significant Pathways of Artemisia Annua in the Treatment of Non-Small Cell Lung Carcinoma based on Network Pharmacology. Med Sci Monit 2020; 26:e923624. [PMID: 32474568 PMCID: PMC7285955 DOI: 10.12659/msm.923624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Artemisia annua exerts powerful effects in non-small cell lung carcinoma (NSCLC). Some studies have shown that Artemisia annua possesses the characteristics of new therapeutic drugs for NSCLC patients. However, the underlying molecular mechanism of Artemisia annua anti-NSCLC is not yet fully elucidated because Artemisia annua contains hundreds of ingredients. This study aimed to conduct network pharmacological analysis on the mechanism of action of Artemisia annua against NSCLC. Material/Methods The active ingredients and corresponding potential targets of Artemisia annua were searched and screened in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Then through The Cancer Genome Atlas (TCGA) and the National Center for Biotechnology Information (NCBI) databases to establish NSCLC related targets. Based on the matching results of Artemisia annua potential targets and NSCLC targets, a protein–protein interaction (PPI) network was constructed to analyze the interactions between these targets and topologically screen the central targets. Furthermore, Gene Ontology (GO) biological functions analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways enrichment were carried out. Results There were 19 main active ingredients of Artemisia annua screened for target prediction; 40 NSCLC-related common targets were identified via multiple NSCLC databases. The node area and corresponding degree value of AKT1, MYC, CCND1, VEGFA, JUN, MAPK1, EGFR, and ESR1 were large and could be easily found in the PPI network. The aforementioned results were further verified by the analysis of GO biological function and KEGG enrichment analysis. Conclusions The network pharmacology analysis reveals the molecular biological mechanism of Artemisia annua anti-NSCLC via multiple active components, multi-channels, and multi-targets. This suggests that Artemisia annua might be developed as a promising anti-NSCLC drug.
Collapse
Affiliation(s)
- Shu Qiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| | - Hai Bo Xu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| | - Shi Jun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Xin Yu Li
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
23
|
Integrating Pharmacology and Microbial Network Analysis with Experimental Validation to Reveal the Mechanism of Composite Sophora Colon-Soluble Capsule against Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9521073. [PMID: 32382313 PMCID: PMC7189316 DOI: 10.1155/2020/9521073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) has multifactorial pathogenesis that acts synergistically, such as immune system dysregulation and expansion of infectious gut microbiota. Therefore, a multicomponent treatment derived from Chinese herbal medicine that interacts with multiple targets synergistically is needed. Composite sophora colon-soluble capsule (CSCC) is a Chinese herbal formula that has shown therapeutic efficacy against UC in randomized clinical trials. However, its bioactive components and potential target genes against UC remain unclear. Here, we used a network pharmacology approach to detect component-target-pathway interactions of CSCC against UC. A total of 29 gene targets, 91 bioactive components, and 20 enriched pathways of CSCC were identified. The IL-17 signaling pathway activated by infectious gastrointestinal microbes and predicted by the network analysis to be a major pathway modulated by CSCC against UC was studied in a dextran sulfate sodium-induced colitis model. CSCC showed remarkable efficacy against UC with respect to the attenuation of colon length, body weight loss, and disease activity index through gut microbiota recovery and intestinal immune homeostasis. The rectal administration of CSCC reduced the numbers of Th17 cells isolated from both mesenteric lymph nodes and lamina propria mononuclear cells and the levels of IL-17A, IL-6, IL-1β, and TNF-α. Additionally, the percentage of Treg cells and the levels of their hallmark cytokines were upregulated. Rectal administration of CSCC led to microbiota regulation with a significant correlation between suppression of Verrucomicrobiaceae and Ruminococcaceae, as well as the elevation of Lactobacillaceae, and CSCC administration via microbiome correlation heatmaps and cooccurrence network analysis at multiple time points. Thus, our study presents an effective herbal formula, CSCC, for UC treatment and explores its components and mechanisms of efficacy through the examination of gut microbiota and hallmark cytokines in the IL-17 pathway.
Collapse
|