1
|
Yang J, Zhou Y, Zhang J, Zheng Y, He J. Identification of genes related to fatty acid metabolism in type 2 diabetes mellitus. Biochem Biophys Rep 2024; 40:101849. [PMID: 39498440 PMCID: PMC11532806 DOI: 10.1016/j.bbrep.2024.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Aim Fatty acid metabolism is pivotal for lipid synthesis, cellular signaling, and maintaining cell membrane integrity. However, its diagnostic significance in type 2 diabetes mellitus (T2DM) remains unclear. Materials and methods Three datasets and fatty acid metabolism-related genes were retrieved. Differential expression analysis, WGCNA, machine learning algorithms, diagnostic analysis, and validation were employed to identify key feature genes. Functional analysis, ceRNA network construction, immune microenvironment assessment, and drug prediction were conducted to explore the underlying molecular mechanisms. Results Six feature genes were identified with strong diagnostic performance and were involved in processes such as ribosome function and fatty acid metabolism. Immune cells, including dendritic cells, eosinophils, and neutrophils, may play a role in the progression of T2DM. ceRNA and drug-target network analysis revealed potential interactions, such as RP11-miR-29a-YTHDF3 and BPA-MSANTD1. The expression patterns of the feature genes, except for YTHDF3, were consistently upregulated in T2DM, aligning with trends observed in the training set. Conclusion This study investigated the potential molecular mechanisms of six fatty acid metabolism-related genes in T2DM, offering valuable insights that may guide future research and therapeutic development.
Collapse
Affiliation(s)
- Ji Yang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yikun Zhou
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiarui Zhang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongqin Zheng
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jundong He
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
2
|
Niu B, Xia X, Ma L, Yao L, Zhang Y, Su H. LncRNA AC040162.3 Promotes HCV-Induced T2DM Deterioration through the miRNA-223-3p/NLRP3 Molecular Axis. Anal Cell Pathol (Amst) 2023; 2023:5350999. [PMID: 37359091 PMCID: PMC10290564 DOI: 10.1155/2023/5350999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Background Diabetes is one of the most common diseases and major public health burdens worldwide. Type 2 diabetes mellitus (T2DM) is associated with chronic hepatitis C virus (HCV) infection, and lncRNAs play an important role in HCV-induced T2DM. We aimed to explore the effect of lncRNA AC040162.3 on HCV-induced T2DM. Methods HCV was used to infect MIN6 cells to establish an in vitro model. HCV copy number and miRNA expression were detected by Real Time Quantitative PCR (RT-qPCR). Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect the secretion of insulin, and methyl thiazolyl tetrazolium (MTT) was applied to analyze cell viability. Apoptosis was analyzed by Western blotting and flow cytometry. In addition, Western blotting and TdT-mediated dUTP Nick End Labeling (TUNEL) were used to analyze pyroptosis. Luciferase reporter assays were used to investigate the targeting relationship. Results The expression of LncRNA AC040162.3 and NLRP3 was markedly increased in HCV-T2DM, while the expression of miR-223-3p was remarkably inhibited. In vitro experiments demonstrated that lncRNA AC040162.3 silencing or miR-223-3p overexpression remarkably alleviated HCV-induced T2DM deterioration by inhibiting cell apoptosis and pyroptosis and enhancing cell viability. We then demonstrated that silencing lncRNA AC040162.3 promoted the expression of miR-223-3p and that miR-223-3p bound to lncRNA AC040162.3 and the NLRP3 binding site. In addition, the protective effects of LncRNA AC040162.3 silencing in HCV-infected MIN6 cells were reversed by overexpression of NLRP3 or silencing of miR-223-3p. Conclusion Silencing of lncRNA AC040162.3 alleviates the process of HCV-induced T2DM by governing the miR-223-3p/NLRP3 axis.
Collapse
Affiliation(s)
- Ben Niu
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lijing Ma
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lixuan Yao
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yating Zhang
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Heng Su
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Zhang Y, Tan N, Zong Y, Li L, Zhang Y, Liu J, Wang X, Han W, Liu L. LncRNA ENSMUST00000155383 is Involved in the Improvement of DPP-4 Inhibitor MK-626 on Vascular Endothelial Function by Modulating Cacna1c-Mediated Ca 2+ Influx in Hypertensive Mice. Front Mol Biosci 2021; 8:724225. [PMID: 34368236 PMCID: PMC8343177 DOI: 10.3389/fmolb.2021.724225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: This study investigated the protective effects of dipeptidyl peptidase-4 inhibitor MK-626 on vascular endothelial function by regulating lncRNAs in hypertensive vasculature. Methods: Angiotensin Ⅱ (Ang Ⅱ)-loaded osmotic pumps were implanted in mice with or without MK-626 administration. GLP-1 levels in plasma were measured by ELISA. Aortic rings were suspended in myograph for tension measurement. Microarray was performed to analyze lncRNA and mRNA expression profiles. Protein expression and phosphorylation were examined by Western blot. The differentially expressed (DE)-genes were validated by qRT-PCR. The intracellular Ca2+ concentration was detected by laser confocal system. Results: MK-626 elevated plasma GLP-1 level, increased eNOS phosphorylation, improved endothelium-dependent relaxations, and reduced systolic blood pressure in Ang Ⅱ-induced hypertensive mice. Microarray revealed the dysregulations of 723 lncRNAs and 742 mRNAs were reversed by MK-626 in hypertensive mouse aortae. qRT-PCR validation showed that 13 DE-lncRNAs and eight dysregulated mRNAs in both hypertensive mouse aortae and mouse aortic endothelial cells (MAECs) were rescued by MK-626. Among them, four mRNAs (Cacna1C, Itgav, Itga8, and Npnt) were co-expressed with lncRNA ENSMUST00000155383. Cacna1C protein expression was reduced in the ECs but was elevated in smooth muscle cells from Ang Ⅱ-infused mice, which were both reversed by MK-626. Knockdown of lncRNA ENSMUST00000155383 suppressed the increased Cacna1c protein and mRNA expression, elevated Ca2+ level, and enhanced eNOS phosphorylation induced by MK-626 in the hypertensive mouse ECs. Conclusion: The dysregulations of lncRNA ENSMUST00000155383-associated genes might play crucial roles in hypertension-induced endothelial dysfunction through affecting calcium pathway. MK-626 might ameliorate endothelial dysfunction by upregulating lncRNA ENSMUST00000155383, enhancing Ca2+ concentration, and subsequently restoring eNOS activity in hypertension.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Na Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Zong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaorui Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenwen Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Solomon WL, Hector SBE, Raghubeer S, Erasmus RT, Kengne AP, Matsha TE. Genome-Wide DNA Methylation and LncRNA-Associated DNA Methylation in Metformin-Treated and -Untreated Diabetes. EPIGENOMES 2020; 4:epigenomes4030019. [PMID: 34968291 PMCID: PMC8594715 DOI: 10.3390/epigenomes4030019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin, which is used as a first line treatment for type 2 diabetes mellitus (T2DM), has been shown to affect epigenetic patterns. In this study, we investigated the DNA methylation and potential lncRNA modifications in metformin-treated and newly diagnosed adults with T2DM. Genome-wide DNA methylation and lncRNA analysis were performed from the peripheral blood of 12 screen-detected and 12 metformin-treated T2DM individuals followed by gene ontology (GO) and KEGG pathway analysis. Differentially methylated regions (DMRs) observed showed 22 hypermethylated and 11 hypomethylated DMRs between individuals on metformin compared to screen-detected subjects. Amongst the hypomethylated DMR regions were the SLC gene family, specifically, SLC25A35 and SLC28A1. Fifty-seven lncRNA-associated DNA methylation regions included the mitochondrial ATP synthase-coupling factor 6 (ATP5J). Functional gene mapping and pathway analysis identified regions in the axon initial segment (AIS), node of Ranvier, cell periphery, cleavage furrow, cell surface furrow, and stress fiber. In conclusion, our study has identified a number of DMRs and lncRNA-associated DNA methylation regions in metformin-treated T2DM that are potential targets for therapeutic monitoring in patients with diabetes.
Collapse
Affiliation(s)
- Wendy L. Solomon
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa; (W.L.S.); (S.B.E.H.); (S.R.)
| | - Stanton B. E. Hector
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa; (W.L.S.); (S.B.E.H.); (S.R.)
| | - Shanel Raghubeer
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa; (W.L.S.); (S.B.E.H.); (S.R.)
| | - Rajiv T. Erasmus
- Division of Chemical Pathology, Faculty of Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town 7505, South Africa;
| | - Andre P. Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town 7505, South Africa;
- Department of Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Tandi E. Matsha
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa; (W.L.S.); (S.B.E.H.); (S.R.)
- Correspondence: ; Tel.: +27-21-959-6366; Fax: +27-21-959-6760
| |
Collapse
|
5
|
Cheng Y, Hu Q, Zhou J. Silencing of lncRNA PVT1 ameliorates streptozotocin-induced pancreatic β cell injury and enhances insulin secretory capacity by regulating miR-181a-5p. Can J Physiol Pharmacol 2020; 99:303-312. [PMID: 32758099 DOI: 10.1139/cjpp-2020-0268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is a type of metabolic disorder characterized by long-term hyperglycemia. Accumulating evidence shows that long noncoding RNAs (lncRNAs) play significant roles in the occurrence and development of DM. This study intended to investigate the role of lncRNA plasmacytoma variant translocation 1 (PVT1) in rat insulinoma (INS-1) cells damaged by streptozotocin (STZ) and to identify the potential mechanisms. Firstly, PVT1 expression in INS-1 cells was assessed using RT-qPCR after STZ stimulation. After PVT1-knockdown, cell apoptosis, the contents of oxidative stress related markers, and changes in insulin secretion were detected. Results indicated that PVT1 was remarkably upregulated after STZ stimulation. PVT1-knockdown inhibited STZ-induced oxidative stress and apoptosis of INS-1 cells. Moreover, the insulin secretory capacity was notably elevated following PVT1 silencing. Subsequently, a luciferase reporter assay verified that miR-181a-5p was directly targeted by PVT1. The rescue assays revealed that miR-181a-5p inhibitor dramatically abrogated the effects of PVT1 silencing on oxidative stress, apoptosis, and insulin secretion. Taken together, these findings demonstrated that PVT1-knockdown could ameliorate STZ-induced oxidative stress and apoptosis and elevate insulin secretory capacity in pancreatic β cells by regulating miR-181a-5p, suggesting a promising biomarker in DM diagnosis and treatment.
Collapse
Affiliation(s)
- Yinqin Cheng
- Department of Endocrinology, The Second People's Hospital of Nantong City, Nantong City, Jiangsu Province, 226002, China
| | - Qiaosheng Hu
- Department of Endocrinology, Lianshui County People's Hospital, Huaian City, Jiangsu Province, 223400, China
| | - Jie Zhou
- Department of Endocrinology, Liyang People's Hospital, Changzhou City, Jiangsu Province, 213300, China
| |
Collapse
|