1
|
Rai R, Singh V, Ahmad Z, Jain A, Jat D, Mishra SK. Autonomic neuronal modulations in cardiac arrhythmias: Current concepts and emerging therapies. Physiol Behav 2024; 279:114527. [PMID: 38527577 DOI: 10.1016/j.physbeh.2024.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The pathophysiology of atrial fibrillation and ventricular tachycardia that result in cardiac arrhythmias is related to the sustained complicated mechanisms of the autonomic nervous system. Atrial fibrillation is when the heart beats irregularly, and ventricular arrhythmias are rapid and inconsistent heart rhythms, which involves many factors including the autonomic nervous system. It's a complex topic that requires careful exploration. Cultivation of speculative knowledge on atrial fibrillation; the irregular rhythm of the heart and ventricular arrhythmias; rapid oscillating waves resulting from mistakenly inconsistent P waves, and the inclusion of an autonomic nervous system is an inconceivable approach toward clinical intricacies. Autonomic modulation, therefore, acquires new expansions and conceptions of appealing therapeutic intelligence to prevent cardiac arrhythmia. Notably, autonomic modulation uses the neural tissue's flexibility to cause remodeling and, hence, provide therapeutic effects. In addition, autonomic modulation techniques included stimulation of the vagus nerve and tragus, renal denervation, cardiac sympathetic denervation, and baroreceptor activation treatment. Strong preclinical evidence and early human studies support the annihilation of cardiac arrhythmias by sympathetic and parasympathetic systems to transmigrate the cardiac myocytes and myocardium as efficient determinants at the cellular and physiological levels. However, the goal of this study is to draw attention to these promising early pre-clinical and clinical arrhythmia treatment options that use autonomic modulation as a therapeutic modality to conquer the troublesome process of irregular heart movements. Additionally, we provide a summary of the numerous techniques for measuring autonomic tone such as heart rate oscillations and its association with cutaneous sympathetic nerve activity appear to be substitute indicators and predictors of the outcome of treatment.
Collapse
Affiliation(s)
- Ravina Rai
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India
| | - Virendra Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 UP, India
| | - Zaved Ahmad
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India
| | - Abhishek Jain
- Sanjeevani Diabetes and Heart Care Centre, Shri Chaitanya Hospital, Sagar, 470002, MP, India
| | - Deepali Jat
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India.
| | | |
Collapse
|
2
|
Cai C, Wu N, Yang G, Yang S, Liu W, Chen M, Po SS. Transcutaneous electrical vagus nerve stimulation to suppress premature ventricular complexes (TREAT PVC): study protocol for a multi-center, double-blind, randomized controlled trial. Trials 2023; 24:683. [PMID: 37872628 PMCID: PMC10591365 DOI: 10.1186/s13063-023-07713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/07/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The autonomic nervous system can be responsible for the initiation and maintenance of arrhythmias. Low-level tragus stimulation (LLTS), a noninvasive form of autonomic neuromodulation, has been shown to be effective in treating atrial fibrillation. We intended to treat frequent premature ventricular complexes (PVCs) with LLTS. METHODS AND DESIGN The present study will be a prospective multicenter, double-blind, randomized, controlled trial to assess the antiarrhythmic effects of LLTS on frequent PVCs in patients without structured heart disease (SHD). A total of 100 patients with PVC burden > 10% will be randomly assigned to the active or sham LLTS in 1:1 fashion and receive the proposed intervention for 6 months. The primary outcome is PVC burden at 6 months as assessed by 10 days of continuous ambulatory electrocardiographic monitoring. Secondary outcomes include heart rate variability (HRV), quality of life, skin sympathetic nerve activity, and inflammatory markers. Adverse events will also be recorded. DISCUSSION The present trial will be the first to evaluate the effect of LLTS on frequent PVCs on patients without SHD. LLTS may serve as a low-cost, minimal-risk, and non-invasive alternative to conventional antiarrhythmic therapy. TRIAL REGISTRATION ClinicalTrial.gov NCT04909528. Registered on 17 June 2021. World health organization trial registration data set was shown in Supplementary Table 1.
Collapse
Affiliation(s)
- Cheng Cai
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Nan Wu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gang Yang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shu Yang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenjie Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Sunny S Po
- Heart Rhythm Institute, Section of Cardiovascular Diseases, The University of Oklahoma Health Sciences Center, Oklahoma, USA.
| |
Collapse
|
3
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
4
|
Wang Y, Li L, Li S, Fang J, Zhang J, Wang J, Zhang Z, Wang Y, He J, Zhang Y, Rong P. Toward Diverse or Standardized: A Systematic Review Identifying Transcutaneous Stimulation of Auricular Branch of the Vagus Nerve in Nomenclature. Neuromodulation 2022; 25:366-379. [PMID: 35396069 DOI: 10.1111/ner.13346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/19/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES After 20 years of development, there is confusion in the nomenclature of transcutaneous stimulation of the auricular branch of the vagus nerve (ABVN). We performed a systematic review of transcutaneous stimulation of ABVN in nomenclature. MATERIALS AND METHODS A systematic search of the literature was carried out, using the bibliographic search engine PubMed. The search covered articles published up until June 11, 2020. We recorded the full nomenclature and abbreviated nomenclature same or similar to transcutaneous stimulation of ABVN in the selected eligible studies, as well as the time and author information of this nomenclature. RESULTS From 261 studies, 67 full nomenclatures and 27 abbreviated nomenclatures were finally screened out, transcutaneous vagus nerve stimulation and tVNS are the most common nomenclature, accounting for 38.38% and 42.06%, respectively. In a total of 97 combinations of full nomenclatures and abbreviations, the most commonly used nomenclature for the combination of transcutaneous vagus nerve stimulation and tVNS, accounting for 30.28%. Interestingly, the combination of full nomenclatures and abbreviations is not always a one-to-one relationship, there are ten abbreviated nomenclatures corresponding to transcutaneous vagus nerve stimulation, and five full nomenclatures corresponding to tVNS. In addition, based on the analysis of the usage habits of nomenclature in 21 teams, it is found that only three teams have fixed habits, while other different teams or the same team do not always use the same nomenclature in their paper. CONCLUSIONS The phenomenon of confusion in the nomenclature of transcutaneous stimulation of ABVN is obvious and shows a trend of diversity. The nomenclature of transcutaneous stimulation of ABVN needs to become more standardized in the future.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zixuan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|