1
|
Choi NR, Jung D, Kim SC, Park JW, Choi WG, Kim BJ. Analysis of Network Pharmacological Efficacy and Therapeutic Effectiveness in Animal Models for Functional Dyspepsia of Foeniculi fructus. Nutrients 2023; 15:2644. [PMID: 37375548 DOI: 10.3390/nu15122644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
For centuries, Foeniculi fructus (F. fructus) has been used as a traditional herbal medicine in China and Europe and is widely used as a natural therapy for digestive disorders, including indigestion, flatulence, and bloating. The mechanism of F. fructus that alleviates functional dyspepsia was analyzed through network pharmacology, and its therapeutic effect on an animal model of functional dyspepsia were investigated. The traditional Chinese medicine systems pharmacology (TCMSP) database was used to investigate the compounds, targets, and associated diseases of F. fructus. Information on the target genes was classified using the UniProtdatabase. Using the Cytoscape 3.9.1 software, a network was constructed, and the Cytoscape string application was employed to examine genes associated with functional dyspepsia. The efficacy of F. fructus on functional dyspepsia was confirmed by treatment with its extract in a mouse model of loperamide-induced functional dyspepsia. Seven compounds targeted twelve functional dyspepsia-associated genes. When compared to the control group, F. fructus exhibited significant suppression of symptoms in a mouse model of functional dyspepsia. The results of our animal studies indicated a close association between the mechanism of action of F. fructus and gastrointestinal motility. Based on animal experimental results, the results showed that F. fructus provided a potential means to treat functional dyspepsia, suggesting that its medical mechanism for functional dyspepsia could be described by the relationship between seven key compounds of F. fructus, including oleic acid, β-sitosterol, and 12 functional dyspepsia-related genes.
Collapse
Affiliation(s)
- Na-Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Daehwa Jung
- Department of Pharmaceutical Engineering, Daegu Hanny University, Gyeongsan 38610, Republic of Korea
| | - Sang-Chan Kim
- College of Oriental Medicine, Daegu Hanny University, Gyeongsan 38610, Republic of Korea
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Byung-Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
2
|
Iordache AM, Nechita C, Podea P, Șuvar NS, Mesaroṣ C, Voica C, Bleiziffer R, Culea M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112183. [PMID: 37299164 DOI: 10.3390/plants12112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Dracea" Calea Bucovinei, 73 Bis, 725100 Campulung Moldovenesc, Romania
| | - Paula Podea
- Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| | - Cornelia Mesaroṣ
- Department of Biophysics, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureş, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ramona Bleiziffer
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Monica Culea
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Li H, Lin J, Yang F, Deng J, Lai J, Zeng J, Zou W, Jiang N, Huang Q, Li H, Liu J, Li M, Zhong Z, Wu J. Sanguisorba officinalis L. suppresses non-small cell lung cancer via downregulating the PI3K/AKT/mTOR signaling pathway based on network pharmacology and experimental investigation. Front Pharmacol 2022; 13:1054803. [PMID: 36506573 PMCID: PMC9729289 DOI: 10.3389/fphar.2022.1054803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Sanguisorba officinalis L. (SOL), a traditional Chinese herbal medicine called Diyu, has been shown to have potent antitumor effects. However, the role of SOL in suppressing NSCLC remains unknown. Methods: Network pharmacology was employed for acquiring the potential targets and mechanisms of SOL in NSCLC. Based on the predictions of network pharmacology, we used CCK8 and EdU assays to investigate cell proliferation, flow cytometry to investigate apoptosis, wound healing assay to investigate cell migration, and transwell assay to investigate cell invasion in vitro. Western blot was employed for detecting the potential proteins, including signaling pathways and apoptosis. The A549-bearing athymic nude mice were employed to verify the effect on cell proliferation and apoptosis in vivo. Results: SOL significantly inhibited the proliferation, migration and invasion of NSCLC cells in a dose-dependent manner. Flow cytometry showed that the apoptotic ratio and ROS level of NSCLC cells increased significantly with increasing concentrations. AKT and the PI3K-AKT signaling pathway were analyzed as the most relevant target and pathway via network pharmacology predictions. Western blotting revealed that the expression levels of p-PI3K, p-AKT, and p-mTOR in NSCLC cells treated with SOL were significantly downregulated, while cleaved PARP-1 and caspase-3 were upregulated in a dose-dependent manner. The results in the mouse xenograft model were consistent with those in NSCLC cell lines. Conclusion: SOL downregulated the PI3K/AKT/mTOR signaling pathway to suppress NSCLC.
Collapse
Affiliation(s)
- Hong Li
- School of Pharmacy, Southwest Medical University, Luzhou, China,Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Junzhu Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China,The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China,The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mao Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhirong Zhong
- School of Pharmacy, Southwest Medical University, Luzhou, China,*Correspondence: Zhirong Zhong, ; Jianming Wu,
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China,The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China,School of Basic Medical University, Southwest Medical University, Luzhou, China,*Correspondence: Zhirong Zhong, ; Jianming Wu,
| |
Collapse
|
4
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
5
|
Fu C, Zhang K, Wang M, Qiu F. Casticin and chrysosplenol D from Artemisia annua L. induce apoptosis by inhibiting topoisomerase IIα in human non-small-cell lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154095. [PMID: 35398735 DOI: 10.1016/j.phymed.2022.154095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Artemisia annua L. (A. annua) and its active components exhibit antitumour effects in many cancer cells. However, the biological processes and mechanisms involved are not well understood, especially for the treatment of non-small-cell lung cancer (NSCLC). PURPOSE This study aimed to comprehensively explore the biological processes of A. annua and its active components in NSCLC cells and to identify the mechanism by which these compounds induce apoptosis. STUDY DESIGNS/METHODS Cell viability and flow cytometry assays were used to evaluate the cytotoxicity of A. annua active components casticin (CAS) and chrysosplenol D (CHD) in A. annua in NSCLC cells. After treatment with CAS and CHD, A549 cells were subjected to RNA sequencing (RNA-seq) analysis, differentially expressed genes (DEGs) were screened and subjected to functional enrichment analysis (KEGG and GO analysis) as well as protein interaction network analysis. The key targets associated with apoptosis induction in A549 cells were screened by Cytoscape, and the screened DEGs were validated by qRT-PCR. Immunoblotting, immunofluorescence, and molecular docking assays were used to determine whether CAS and/or CHD could induce apoptosis in NSCLC cells by inducing DNA damage through down-regulation of topoisomerase IIα (topo IIα) expression. The same experiments were verified again in the H1299 lung cancer cell line. RESULTS CAS and CHD inhibited NSCLC cells proliferation in a time- and dose-dependent manner, and significantly induced apoptosis. A total of 115 co-upregulated DEGs and 277 co-downregulated DEGs were identified in A549 cells following treatment with CAS and CHD. Comprehensive and systematic data about biological processes and mechanisms were obtained. DNA damage pathways and topo IIα targets were screened to study the apoptosis effects of CAS and CHD on NSCLC cells. CAS and CHD may be able to induce DNA damage by binding to topo IIα-DNA and reducing topo IIα activity. CONCLUSION This study suggested that CAS and CHD may reduce topo IIα activity by binding to topo IIα-DNA, affecting the replication of DNA, triggering DNA damage, and inducing apoptosis. It described a novel mechanism associated with topo IIα inhibition to reveal a novel role for CAS and CHD in A. annua as potential anticancer agents and/or adjuvants in NSCLC cells.
Collapse
Affiliation(s)
- Chunqing Fu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Keyu Zhang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Manyuan Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Feng Qiu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Exploration of the System-Level Mechanisms of the Herbal Drug FDY003 for Pancreatic Cancer Treatment: A Network Pharmacological Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7160209. [PMID: 35591866 PMCID: PMC9113891 DOI: 10.1155/2022/7160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) is the most lethal cancer with the lowest survival rate globally. Although the prescription of herbal drugs against PC is gaining increasing attention, their polypharmacological therapeutic mechanisms are yet to be fully understood. Based on network pharmacology, we explored the anti-PC properties and system-level mechanisms of the herbal drug FDY003. FDY003 decreased the viability of human PC cells and strengthened their chemosensitivity. Network pharmacological analysis of FDY003 indicated the presence of 16 active phytochemical components and 123 PC-related pharmacological targets. Functional enrichment analysis revealed that the PC-related targets of FDY003 participate in the regulation of cell growth and proliferation, cell cycle process, cell survival, and cell death. In addition, FDY003 was shown to target diverse key pathways associated with PC pathophysiology, namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF, p53, HIF-1, and Ras pathways. Our network pharmacological findings advance the mechanistic understanding of the anti-PC properties of FDY003 from a system perspective.
Collapse
|
7
|
Choi WG, Choi NR, Park EJ, Kim BJ. A study of the therapeutic mechanism of Jakyakgamcho-Tang about functional dyspepsia through network pharmacology research. Int J Med Sci 2022; 19:1824-1834. [PMID: 36438925 PMCID: PMC9682510 DOI: 10.7150/ijms.77451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Herbal medicines have traditionally been used as an effective digestive medicine. However, compared to the effectiveness of Herbal medicines, the treatment mechanism has not been fully identified. To solve this problem, a system-level treatment mechanism of Jakyakgamcho-Tang (JGT), which is used for the treatment of functional dyspepsia (FD), was identified through a network pharmacology study. The two components, paeoniae radix alba and licorice constituting JGT were analyzed based on broad information on chemical and pharmacological properties, confirming 84 active chemical compounds and 84 FD-related targets. The JGT target confirmed the relationship with the regulation of various biological movements as follows: cellular behaviors of muscle and cytokine, calcium ion concentration and homeostasis, calcium- and cytokine-mediated signalings, drug, inflammatory response, neuronal cells, oxidative stress and response to chemical. And the target is enriched in variety FD-related signaling as follows: MAPK, Toll-like receptor, NOD-like receptor, PI3K-Akt, Apoptosis and TNF signaling pathway. These data give a new approach to identifying the molecular mechanisms underlying the digestive effect of JGT.
Collapse
Affiliation(s)
- Woo-Gyun Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Na Ri Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun-Jung Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
8
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacology-Based Dissection of the Comprehensive Molecular Mechanisms of the Herbal Prescription FDY003 Against Estrogen Receptor-Positive Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211044377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen receptor-positive breast cancer (ERPBC) is the commonest subtype of breast cancer, with a high prevalence, incidence, and mortality. Herbal drugs are increasingly being used to treat ERPBC, although their mechanisms of action are not fully understood. Therefore, in this study, we aimed to analyze the therapeutic properties of FDY003, a herbal anti-ERPBC prescription, using a network pharmacology approach. FDY003 decreased the viability of human ERPBC cells and sensitized them to tamoxifen, an endocrine drug that is widely used in the treatment of ERPBC. The network pharmacology analysis revealed 18 pharmacologically active components in FDY003 that may interact with and regulate 66 therapeutic targets. The enriched gene ontology terms for the FDY003 targets were associated with the modulation of cell survival and death, cell proliferation and growth arrest, and estrogen-associated cellular processes. Analysis of the pathway enrichment of the targets showed that FDY003 may target a variety of ERPBC-associated pathways, including the PIK3-Akt, focal adhesion, MAPK, and estrogen pathways. Overall, these data provide a comprehensive mechanistic insight into the anti-ERPBC activity of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | | | | | | | - Minho Jung
- Forest Hospital, Seoul, Republic of Korea
| | | | | | - Dae-Yeon Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| |
Collapse
|
9
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhao H, Yang H, Liu M, Ren S, Xu H. Traditional Chinese Medicine and Colorectal Cancer: Implications for Drug Discovery. Front Pharmacol 2021; 12:685002. [PMID: 34276374 PMCID: PMC8281679 DOI: 10.3389/fphar.2021.685002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
As an important part of complementary and alternative medicine, traditional Chinese medicine (TCM) has been applied to treat a host of diseases for centuries. Over the years, with the incidence rate of human colorectal cancer (CRC) increasing continuously and the advantage of TCM gradually becoming more prominent, the importance of TCM in both domestic and international fields is also growing with each passing day. However, the unknowability of active ingredients, effective substances, and the underlying mechanisms of TCM against this malignant tumor greatly restricts the translation degree of clinical products and the pace of precision medicine. In this review, based on the characteristics of TCM and the oral administration of most ingredients, we herein provide beneficial information for the clinical utilization of TCM in the prevention and treatment of CRC and retrospect the current preclinical studies on the related active ingredients, as well as put forward the research mode for the discovery of active ingredients and effective substances in TCM, to provide novel insights into the research and development of innovative agents from this conventional medicine for CRC treatment and assist the realization of precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Comprehensive Understanding of the Anticancer Mechanisms of FDY2004 Against Cervical Cancer Based on Network Pharmacology. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211004304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herbal drugs are continuously being developed and used as effective therapeutics for various cancers, such as cervical cancer (CC); however, their mechanisms of action at a systemic level have not been explored fully. To study such mechanisms, we conducted a network pharmacological investigation of the anti-CC mechanisms of FDY2004, an herbal drug consisting of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma. We found that FDY2004 inhibited the viability of human CC cells. By performing pharmacokinetic evaluation and network analysis of the phytochemical components of FDY2004, we identified 29 bioactive components and their 116 CC-associated pharmacological targets. Gene ontology enrichment analysis showed that the modulation of cellular functions, such as apoptosis, growth, proliferation, and survival, might be mediated through the FDY2004 targets. The therapeutic targets were also key components of CC-associated oncogenic and tumor-suppressive pathways, including PI3K-Akt, human papillomavirus infection, IL-17, MAPK, TNF, focal adhesion, and viral carcinogenesis pathways. In conclusion, our data present a comprehensive insight for the mechanisms of the anti-CC properties of FDY2004.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
11
|
Uncovering the Anti-Lung-Cancer Mechanisms of the Herbal Drug FDY2004 by Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6644018. [PMID: 33628308 PMCID: PMC7886515 DOI: 10.1155/2021/6644018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
With growing evidence on the therapeutic efficacy and safety of herbal drugs, there has been a substantial increase in their application in the lung cancer treatment. Meanwhile, their action mechanisms at the system level have not been comprehensively uncovered. To this end, we employed a network pharmacology methodology to elucidate the systematic action mechanisms of FDY2004, an anticancer herbal drug composed of Moutan Radicis Cortex, Persicae Semen, and Rhei Radix et Rhizoma, in lung cancer treatment. By evaluating the pharmacokinetic properties of the chemical compounds present in FDY2004 using herbal medicine-associated databases, we identified its 29 active chemical components interacting with 141 lung cancer-associated therapeutic targets in humans. The functional enrichment analysis of the lung cancer-related targets of FDY2004 revealed the enriched Gene Ontology terms, involving the regulation of cell proliferation and growth, cell survival and death, and oxidative stress responses. Moreover, we identified key FDY2004-targeted oncogenic and tumor-suppressive pathways associated with lung cancer, including the phosphatidylinositol 3-kinase-Akt, mitogen-activated protein kinase, tumor necrosis factor, Ras, focal adhesion, and hypoxia-inducible factor-1 signaling pathways. Overall, our study provides novel evidence and basis for research on the comprehensive anticancer mechanisms of herbal medicines in lung cancer treatment.
Collapse
|
12
|
An Investigation of the Molecular Mechanisms Underlying the Analgesic Effect of Jakyak-Gamcho Decoction: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6628641. [PMID: 33343676 PMCID: PMC7732394 DOI: 10.1155/2020/6628641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Herbal drugs have drawn substantial interest as effective analgesic agents; however, their therapeutic mechanisms remain to be fully understood. To address this question, we performed a network pharmacology study to explore the system-level mechanisms that underlie the analgesic activity of Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-To in Japanese), an herbal prescription consisting of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fischer. Based on comprehensive information regarding the pharmacological and chemical properties of the herbal constituents of JGd, we identified 57 active chemical compounds and their 70 pain-associated targets. The JGd targets were determined to be involved in the regulation of diverse biological activities as follows: calcium- and cytokine-mediated signalings, calcium ion concentration and homeostasis, cellular behaviors of muscle and neuronal cells, inflammatory response, and response to chemical, cytokine, drug, and oxidative stress. The targets were further enriched in various pain-associated signalings, including the PI3K-Akt, estrogen, ErbB, neurotrophin, neuroactive ligand-receptor interaction, HIF-1, serotonergic synapse, JAK-STAT, and cAMP pathways. Thus, these data provide a systematic basis to understand the molecular mechanisms underlying the analgesic activity of herbal drugs.
Collapse
|