Zhou X, A Zezi MY, Li D, Wang J. Telmisartan ameliorates LPS-induced pneumonia in rats through regulation of the PPARγ/NF-κB pathway.
Microbiol Immunol 2022;
66:371-378. [PMID:
35485217 DOI:
10.1111/1348-0421.12981]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Pneumonia is a common disorder of the respiratory system associated with inflammation. Telmisartan (TEL) has been reported to treat inflammatory-related diseases. The current study is aimed to make investigations for the possible role and action mechanism of TEL on lipopolysaccharide (LPS)-induced pneumonia rats. Forty male Sprague Dawley (SD) rats aged 8 weeks were assigned into four groups ad libitum: a control group received saline only, an experimental group received LPS, a group received TEL (5 mg/kg), followed by LPS treatment, and a group received TEL (10 mg/kg), followed by LPS treatment. LPS (2 mg/kg) and equal saline were administered intratracheally. TEL was orally administrated 5 days before LPS. After LPS treatment for 24 h, bronchoalveolar lavage fluid (BALF) and serum were collected for the analysis of cell counts and/or cytokines. Lung tissues were used to perform histological examination, assess oxidative stress levels, and determine the levels of PPARγ/NF-κB pathway-related proteins. Rats received LPS treatment exhibited high levels of lung wet/dry ratio, ALP, LDH, BALF polymorphonuclear leukocytes count, inflammatory cytokines, and oxidative stress. Meanwhile, LPS also resulted in severe interstitial edema and inflammatory cells infiltration. Interestingly, TEL by oral administration remarkably ameliorated the adverse effects on pneumonia rats caused by LPS. In addition, western blotting further revealed that TEL could activate PPARγ and repress NF-κB (p65). TEL is protective against pneumonia through inhibition of the inflammation and oxidative stress via the PPARγ/NF-κB pathway. This article is protected by copyright. All rights reserved.
Collapse