1
|
Khan H, Singh A, Singh Y, Sharma D, Dua K, Grewal AK, Singh TG. Pharmacological modulation of PI3K/PTEN/Akt/mTOR/ERK signaling pathways in ischemic injury: a mechanistic perspective. Metab Brain Dis 2025; 40:131. [PMID: 40009091 DOI: 10.1007/s11011-025-01543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemia, also known as ischemia, relates to the reduced blood movement to a cells, muscle group, or organ in the body, culminating in an insufficient amount of oxygen required for cellular metabolism and the maintenance of tissue viability. There are different types of stroke (ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage), and different causes of stroke (e.g., cardioembolic, atherothrombotic, lacunar ischemic strokes, aneurysmal subarachnoid hemorrhage). It also includes other disorders affecting the blood vessels in the brain (e.g., vascular malformations, unruptured aneurysms). Each of these conditions has different characteristics in terms of how common they are and how they are managed. Stroke is the primary and catastrophic clinical presentation of all cerebrovascular diseases. In this review we focused about the importance of PI3K/AKT signaling pathways which are important in the onset of ischemia-reperfusion (I/R) injury. In addition, mTOR, a target that is activated by the PI3K/Akt signaling pathway, is both required and capable of providing enough protection to the heart against harm caused by I/R. Moreover, the signaling pathways that involve PI3K/Akt/Erk/PTEN/mTOR play a crucial role in facilitating the proliferation and maintenance of neurons following an ischemic stroke. The current review summarizes the molecular mechanisms of various signaling pathways in ischemic diseases and suggests targeting its receptors as a preventive approach based on pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Aditi Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Yashvardhan Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Diksha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India.
| |
Collapse
|
2
|
Xu R, Peng Q, Chen W, Cheng X, Wang G. ncRNAs-Mediated Pyroptosis in Cerebral Ischemia-Reperfusion Injury: Pathophysiology, Mechanisms, and Therapeutic Perspectives. Curr Issues Mol Biol 2025; 47:141. [PMID: 40136395 PMCID: PMC11941337 DOI: 10.3390/cimb47030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a complex pathological process triggered by transient obstruction of blood flow and subsequent reperfusion, ultimately leading to intracellular disturbances such as oxidative stress, inflammatory responses, and programmed cell death. Among the various types of cell death, pyroptosis (an inflammatory kind of regulated cell death) has received increasing attention due to its involvement in key neurovascular unit cells, including endothelial cells, neurons, microglia, and astrocytes. Intriguingly, accumulating evidence demonstrates that non-coding RNAs (ncRNAs), including long non-coding RNAs, microRNAs, and circular RNAs, can modulate multiple stages of pyroptosis in CIRI. This review synthesizes recent findings on the ncRNAs-regulated pyroptosis in CIRI. We highlight the molecular underpinnings of pyroptotic activation following ischemic injury and discuss how ncRNAs shape these mechanisms. By elucidating the interactions between ncRNAs and pyroptosis-related pathways, we intend to present innovative viewpoints for early diagnosis and the development of potential therapeutic strategies to mitigate CIRI.
Collapse
Affiliation(s)
- Ruiyi Xu
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (R.X.); (W.C.)
| | - Quan Peng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (R.X.); (W.C.)
| | - Xihua Cheng
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (R.X.); (W.C.)
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| |
Collapse
|
3
|
Zhang M, Zhou H, He R, Yang J, Zou Y, Deng Y, Xie H, Yan Z. Up-regulating microRNA-214-3p relieves hypoxic-ischemic brain damage through inhibiting TXNIP expression. Mol Cell Biochem 2023; 478:597-608. [PMID: 35980563 DOI: 10.1007/s11010-022-04530-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
A list of microRNAs (miRs) has been referred to involve in the development of hypoxic-ischemic brain damage (HIBD). Based on that, we probed the concrete role of miR-214-3p regulating thioredoxin-interacting protein (TXNIP) in the illness. A neonatal HIBD mouse model was established using the Rice-Vannucci method, followed by measurements of miR-214-3p and TXNIP levels in brain tissues. After modeling, mice were given brain injection of the compounds that could alter miR-214-3p and TXNIP expression. Afterward, neurological function, neuronal inflammation, neuronal apoptosis, neuron morphology, and the number of Nissl body were assessed in HIBD mice. The binding of miR-214-3p to TXNIP was analyzed. Lower miR-214-3p and higher TXNIP were analyzed in brain tissues of mice with HIBD. Up-regulating miR-214-3p or depleting TXNIP improved neurological function, reduced neuronal inflammation and neuronal apoptosis, attenuated morphological damage of neurons, and increased the number of Nissl bodies in mice with HIBD. TXNIP was targeted by miR-214-3p and overexpressing TXNIP reversed the therapeutic effect of miR-214-3p on HIBD mice. It is noted that promotion of miR-214-3p relieves HIBD in mice through inhibiting TXNIP expression.
Collapse
Affiliation(s)
- Miaoyu Zhang
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Haiyang Zhou
- Department of Neurology, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Rongni He
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China
| | - Juan Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China
| | - Yang Zou
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yiting Deng
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China.
| | - Zhenxing Yan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
4
|
Li Y, Liu C, Fan H, Du Y, Zhang R, Zhan S, Zhang G, Bu N. Gli2-induced lncRNA Peg13 alleviates cerebral ischemia-reperfusion injury by suppressing Yy1 transcription in a PRC2 complex-dependent manner. Metab Brain Dis 2023; 38:1389-1404. [PMID: 36662414 DOI: 10.1007/s11011-023-01159-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Endothelial cell dysfunction plays an important role in cerebral ischemia-reperfusion (I/R) injury. LncRNA Peg13 is reported to be down-regulated in brain microvascular endothelial cells (BMVECs) induced by glucose-oxygen deprivation (OGD), but the mechanism of its involvement in I/R progression remains to be further explored. Here, mouse BMVECs (bEnd.3 cells) were treated with OGD / reoxygenation (OGD/R) to simulate I/R injury in vitro. Peg13 and Gli2 expression was decreased in OGD/R-treated bEnd.3 cells. And overexpression of Peg13 or Gli2 prevented OGD/R-induced reduction in cell migration and angiogenesis, as well as upregulation in cell apoptosis and oxidative stress levels. Mechanism exploration showed that Gli2 promoted the transcription of Peg13. And Peg13 repressed Yy1 transcription by binding to Ezh2 (a key subunit of PRC2 complex) and inducing the enrichment of H3K27me3 in Yy1 promoter region, thereby suppressing the transcriptional inhibition effect of Yy1 on Notch3 and promoting the expression of Notch3. Consistently, Notch3 overexpression hindered OGD/R-induced endothelium dysfunction. In addition, a brain I/R injury model was established using middle cerebral artery occlusion surgery. And lentivirus-mediated Gli2 and Peg13 overexpression vectors were injected into mice via the lateral ventricle one week before surgery. The results showed that overexpression of Peg13 or Gli2 alleviated I/R-induced neurological deficit, cerebral infarct and cerebral edema. And simultaneous overexpression of Peg13 and Gli2 showed a better protective effect than overexpression of Gli2 or Peg13 alone. In conclusion, Peg13 regulated by Gli2 inhibits Yy1 transcription in a PCR2 complex-dependent manner, and blocks the transcriptional repression of Notch3 by Yy1, thereby exerting neuroprotective effects on cerebral I/R injury.
Collapse
Affiliation(s)
- Yanling Li
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China.
| | - Chuntian Liu
- Department of Geriatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi province, China
| | - Hong Fan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Yun Du
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Ru Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Guilian Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Ning Bu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| |
Collapse
|
5
|
Cao JW, Tang ZB, Zhao JW, Zhao JK, Yao JL, Sheng XM, Zhao MQ, Duan Q, Han BC, Duan SR. LncRNA nuclear-enriched abundant transcript 1 aggravates cerebral ischemia/reperfusion injury through activating early growth response-1/RNA binding motif protein 25 axis. J Neurochem 2022; 163:500-516. [PMID: 35997641 DOI: 10.1111/jnc.15692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/14/2023]
Abstract
Ischemic stroke is a major global health issue. Ischemia and subsequent reperfusion results in stroke-related brain injury. Previous studies have demonstrated that nuclear-enriched abundant transcript 1 (NEATa and early growth response 1 (EGR1) are involved in ischemia reperfusion (IR) injury). In this study, we aimed to explore the roles of NEAT1/EGR1 axis as well as its downstream effector RNA binding motif protein 25 (RBM25) in cerebral IR injury. Oxygen-glucose deprivation/reperfusion (OGD/R) and middle cerebral artery occlusion (MCAO) were used to establish in vitro and in vivo models of cerebral IR injury, respectively. According to our data, NEAT1, EGR1, and RBM25 levels were elevated in OGD/R-exposed SK-N-SH and SH-SY5Y cells and cerebral cortex of MCAO mice. NEAT1, EGR1, or RBM25 knockdown effectively reduced infarct volumes and apoptosis, and improved neurological function. Mechanistically, NEAT1 directly interacted with EGR1, which restrained WW domain containing E3 ubiquitin protein ligase 1 (WWP1)-mediated ubiquitination of EGR1 and subsequently caused EGR1 accumulation. EGR1 bound to RBM25 promoter and transcriptionally activated RBM25. Rescue experiments indicated that RBM25 overexpression abolished the therapeutic effects of NEAT1 knockdown. In conclusion, this work identified a novel NEAT1/EGR1/RBM25 axis in potentiating brain injury after IR insults, suggesting a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jing-Wei Cao
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhan-Bin Tang
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ji-Wei Zhao
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing-Kun Zhao
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jia-Lin Yao
- Harbin First Hospital, Harbin, Heilongjiang Province, China
| | - Xiao-Meng Sheng
- Harbin Fourth Hospital, Harbin, Heilongjiang Province, China
| | - Mian-Qiao Zhao
- Harbin Second Hospital, Harbin, Heilongjiang Province, China
| | - Qiong Duan
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bai-Chao Han
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shu-Rong Duan
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
6
|
Wang J, Chen X, Sun L, Chen X, Li H, Xiong B, Wang H. [Long noncoding RNA ZEB1-AS1 aggravates cerebral ischemia/reperfusion injury in rats through the HMGB1/TLR-4 signaling axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1134-1142. [PMID: 36073211 DOI: 10.12122/j.issn.1673-4254.2022.08.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of long non-coding RNA ZEB1-AS1 in cerebral ischemia/reperfusion injury (CI/RI). METHODS We detected the temporal changes of ZEB1-AS1 and HMGB1 expression using qPCR and Western blotting in SD rats following CI/RI induced by middle cerebral artery occlusion (MCAO). The rat models of CI/RI were subjected to injections of vectors for ZEB1-AS1 overexpression or knockdown into the lateral ventricle, and the changes in cognitive function, brain water content, blood-brain barrier integrity, and IL-1β and TNF-α levels in the cerebrospinal fluid (CSF) and serum were observed. Neuronal loss and cell apoptosis in the cortex of the rat models were detected by FJC and TUNEL methods, and HMGB1 and TLR-4 expressions were analyzed with Western blotting. We also examined the effects of ZEB1-AS1 knockdown on apoptosis and expressions of HMGB1 and TLR-4 in SH-SY5Y cells with oxygen-glucose deprivation/reoxygenation (OGD/R). RESULTS In CI/RI rats, the expressions of ZEB1-AS1 and HMGB1 in the brain tissue increased progressively with the extension of reperfusion time, reaching the peak levels at 24 h followed by a gradual decline. ZEB1-AS1 overexpression significantly aggravated icognitive impairment and increased brain water content, albumin content in the CSF, and IL-1β and TNF-α levels in the CSF and serum in CI/RI rats (P < 0.05), while ZEB1-AS1 knockdown produced the opposite effects (P < 0.05 or 0.01). ZEB1-AS1 overexpression obviously increased the number of FJC-positive neurons in the cortex and enhanced the expressions of HMGB1 and TLR-4 in the rat models (P < 0.01); ZEB1-AS1 knockdown significantly reduced the number of FJC-positive neurons and lowered HMGB1 and TLR-4 expressions (P < 0.01). In SH-SY5Y cells with OGD/R, ZEB1-AS1 knockdown significantly suppressed cell apoptosis and lowered the expressions of HMGB1 and TLR-4 (P < 0.01). CONCLUSION ZEB1-AS1 overexpression aggravates CI/RI in rats through the HMGB1/TLR-4 signaling axis.
Collapse
Affiliation(s)
- J Wang
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - X Chen
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - L Sun
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - X Chen
- Graduate School, Wannan Medical College, Wuhu 241002, China
| | - H Li
- Graduate School, Wannan Medical College, Wuhu 241002, China
| | - B Xiong
- College of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - H Wang
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
7
|
Cai Z, Li S, Yu T, Deng J, Li X, Jin J. Non-Coding RNA Regulatory Network in Ischemic Stroke. Front Neurol 2022; 13:820858. [PMID: 35309579 PMCID: PMC8927803 DOI: 10.3389/fneur.2022.820858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 01/05/2023] Open
Abstract
Stroke is a worldwide public health problem that has caused a substantial economic burden to families and society. Despite recent major advances, there is still a need for more timely, effective diagnosis and treatment methods for acute ischemic stroke. Non-coding RNAs (ncRNAs), which widely exist in the human body, do not encode proteins. Instead, these mediate various cellular processes as functional regulatory molecules from the RNA level. Each ncRNA node in organisms is not isolated but constitutes a complex regulatory network, regulating multiple molecular targets and triggering specific physiological or pathological reactions, leading to different outcomes. Abundant studies have proclaimed the impact of ncRNAs in ischemic stroke, which may enlighten new inspirations for diagnosing and treating ischemic stroke. This paper outlines the current understanding of the ncRNA regulatory network and reviews the recent evidence for the contribution of ncRNAs in the experimental ischemic stroke model.
Collapse
Affiliation(s)
- Zongyan Cai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shuo Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tianci Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiahui Deng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xinran Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiaxin Jin
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Jiaxin Jin
| |
Collapse
|
8
|
Jing W, Tuxiu X, Xiaobing L, Guijun J, Lulu K, Jie J, Lu Y, Liying Z, Xiaoxing X, Jingjun L. LncRNA GAS5/miR-137 Is a Hypoxia-Responsive Axis Involved in Cardiac Arrest and Cardiopulmonary Cerebral Resuscitation. Front Immunol 2022; 12:790750. [PMID: 35087519 PMCID: PMC8787067 DOI: 10.3389/fimmu.2021.790750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cardiac arrest/cardiopulmonary resuscitation (CA/CPR) represents one of the devastating medical emergencies and is associated with high mortality and neuro-disability. Post-cardiac arrest syndrome (PCAS) is mechanistically ascribed to acute systemic ischemia/reperfusion(I/R) injury. The lncRNA/microRNA/mRNA networks have been found to play crucial roles in the pathogenesis of the hypoxia-responsive diseases. Nonetheless, the precise molecular mechanisms by which lncRNA/miRNA/mRNA axes are involved in the astrocyte-microglia crosstalk in CA/CPR have not been fully elucidated. Methods We collected and purified the exosomes from the blood of CA/CPR patients and supernatant of OGD/R-stimulated astrocytes. On the basis of microarray analysis, bioinformatic study, and luciferase activity determination, we speculated that lncRNA GAS5/miR-137 is implicated in the astrocyte-microglia crosstalk under the insult of systemic I/R injury. The regulation of lncRNA GAS5/miR-137 on INPP4B was examined by cellular transfection in OGD/R cell culture and by lateral ventricle injection with miR-137 agomir in CA/CPR mice model. Flow cytometry and immunofluorescence staining were performed to detect the microglial apoptosis, M1/M2 phenotype transformation, and neuroinflammation. Neurological scoring and behavior tests were conducted in CA/CPR group, with miR-137 agomir lateral-ventricle infusion and in their controls. Results In all the micRNAs, miR-137 was among the top 10 micRNAs that experienced greatest changes, in both the blood of CA/CPR patients and supernatant of OGD/R-stimulated astrocytes. Bioinformatic analysis revealed that miR-137 was sponged by lncRNA GAS5, targeting INPP4B, and the result was confirmed by Luciferase activity assay. qRT-PCR and Western blotting showed that lncRNA GAS5 and INPP4B were over-expressed whereas miR-137 was downregulated in the blood of CA/CPR patients, OGD/R-stimulated astrocytes, and brain tissue of CA/CPR mice. Silencing lncRNA GAS5 suppressed INPP4B expression, but over-expression of miR-137 negatively modulated its expression. Western blotting exhibited that PI3K and Akt phosphorylation was increased when lncRNA GAS5 was silenced or miR-137 was over-expressed. However, PI3K and Akt phosphorylation was notably suppressed in the absence of miR-137, almost reversing their phosphorylation in the silencing lncRNA GAS5 group. Then we found that GAS5 siRNA or miR-137 mimic significantly increased cell viability and alleviated apoptosis after OGD/R injury. Furthermore, over-expression of miR-137 attenuated microglial apoptosis and neuroinflammation in CA/CPR mice model, exhibiting significantly better behavioral tests after CA/CPR. Conclusion LncRNA GAS5/miR-137 may be involved in the astrocyte-microglia communication that inhibits PI3K/Akt signaling activation via regulation of INPP4B during CA/CPR.
Collapse
Affiliation(s)
- Wang Jing
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xie Tuxiu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
- Department of General Practice, Renmin Hospital of Wuhan University, Wuhan, China
| | - Long Xiaobing
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Guijun
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kang Lulu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Jie
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ye Lu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhan Liying
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiong Xiaoxing
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lyu Jingjun
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Hu G, Shi Z, Shao W, Xu B. MicroRNA-214-5p involves in the protection effect of Dexmedetomidine against neurological injury in Alzheimer's disease via targeting the suppressor of zest 12. Brain Res Bull 2021; 178:164-172. [PMID: 34715270 DOI: 10.1016/j.brainresbull.2021.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a neurological disease. Dexmedetomidine (Dex) has been evidenced to exert neuroprotective effects on multiple neurological diseases, while the function of microRNA(miR)- 214-5p on Dex-mediated AD progression via targeting the suppressor of zest 12 (SUZ12) remains unclear. This study obligates to investigate the regulatory functions of Dex, miR-214-5p and SUZ12 on AD. METHODS The expression of miR-214-5p and SUZ12 in APPswe/PS1dE9 mice (hereinafter referred to as AD mice) was examined. Thereafter, the AD mice were treated with Dex or increased miR-214-5p or reduced SUZ12 to determine the spatial memory ability, apoptosis of hippocampal neurons and the contents of serum inflammatory and oxidative stress factors of AD mice. Finally, the target relationship between miR-214-5p and SUZ12 was detected. RESULTS MiR-214-5p was reduced and SUZ12 was elevated in AD mice. Dex administration reduced the apoptosis of hippocampal neurons, the contents of serum inflammatory factor and oxidative stress, and attenuated the cognitive impairment of AD mice accompanied by up-regulated miR-214-5p and down-regulated SUZ12, and the overexpression of miR-214-5p or reduction of SUZ12 could effectively enhance the Dex-treated effects on AD mice. MiR-214-5p targeted SUZ12. CONCLUSION Dex may have a potential neuroprotective effect on AD via the miR-214-5p/SUZ12 axis. This study provides novel therapeutic targets for AD treatment.
Collapse
Affiliation(s)
- Guangjun Hu
- The first clinical college of Southern Medical University, Guangzhou 430060, Guangdong Province, China; Department of Anesthesiology, Wuhan third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China; Department of Anesthesiology, General Hospital of the Southern Theater Command of the Chinese PLA, Guangzhou 510010, Guangdong Province, China
| | - Zhen Shi
- Department of pain treatment, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province, China; Hubei Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Weidong Shao
- Department of Anesthesiology, General Hospital of the Southern Theater Command of the Chinese PLA, Guangzhou 510010, Guangdong Province, China
| | - Bo Xu
- The first clinical college of Southern Medical University, Guangzhou 430060, Guangdong Province, China; Department of Anesthesiology, General Hospital of the Southern Theater Command of the Chinese PLA, Guangzhou 510010, Guangdong Province, China.
| |
Collapse
|
10
|
Zhao X, Yang L, Qin L. Methyltransferase-like 3 (METTL3) attenuates cardiomyocyte apoptosis with myocardial ischemia-reperfusion (I/R) injury through miR-25-3p and miR-873-5p. Cell Biol Int 2021; 46:992. [PMID: 34553450 DOI: 10.1002/cbin.11706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Methyltransferase-like 3 (METTL3) mediated N6 -methyladenosine (m6A) promotes microRNAs (miRNAs) maturation by processing the primary miRNAs, and METTL3 involves in regulating the development of various diseases, including myocardial ischemia-reperfusion (I/R) injury. However, up until now, the association between METTL3 regulated miRNAs and I/R injury is not fully investigated, which makes investigations on this academic issue necessary. In this study, we showed that METTL3 was downregulated in mice I/R myocardial tissues and hypoxic/re-oxygenated (H/R) cardiomyocytes, and upregulation of METTL3 attenuated I/R and H/R-induced cell apoptosis. In addition, we screened out that two miRNAs, including miR-25-3p and miR-873-5p, were positively regulated by METTL3 in cardiomyocytes in a DGCR8-dependent manner. In addition, both miR-25-3p and miR-873-5p were significantly downregulated by I/R and H/R treatments in mice tissues and cardiomyocytes, and overexpression of the above two miRNAs were effective to improve cell viability in cardiomyocytes under H/R stress. Next, we evidenced that METTL3 suppressed H/R-induced cell death via upregulating miR-25-3p and miR-873-5p. Finally, the potential downstream mechanisms were investigated, and we expectedly found that METTL3 activated the PI3K/Akt pathway in H/R-treated cardiomyocytes through modulating miR-25-3p and miR-873-5p, and the PI3K/Akt pathway inhibitor (LY294002) abrogated the protective effects of METTL3 overexpression in cardiomyocytes with H/R treatment. Collectively, we concluded that METTL3 upregulated miR-25-3p and miR-873-5p to activate the PI3K/Akt pathway, resulting in the suppression of I/R injury.
Collapse
Affiliation(s)
- Xiangmei Zhao
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Lei Yang
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Lijie Qin
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Moukette B, Barupala NP, Aonuma T, Sepulveda M, Kawaguchi S, Kim IM. Interactions between noncoding RNAs as epigenetic regulatory mechanisms in cardiovascular diseases. Methods Cell Biol 2021; 166:309-348. [PMID: 34752338 DOI: 10.1016/bs.mcb.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiovascular diseases (CVDs) represent the foremost cause of mortality in the United States and worldwide. It is estimated that CVDs account for approximately 17.8 million deaths each year. Despite the advances made in understanding cellular mechanisms and gene mutations governing the pathophysiology of CVDs, they remain a significant cause of mortality and morbidity. A major segment of mammalian genomes encodes for genes that are not further translated into proteins. The roles of the majority of such noncoding ribonucleic acids (RNAs) have been puzzling for a long time. However, it is becoming increasingly clear that noncoding RNAs (ncRNAs) are dynamically expressed in different cell types and have a comprehensive selection of regulatory roles at almost every step involved in DNAs, RNAs and proteins. Indeed, ncRNAs regulate gene expression through epigenetic interactions, through direct binding to target sequences, or by acting as competing endogenous RNAs. The profusion of ncRNAs in the cardiovascular system suggests that they may modulate complex regulatory networks that govern cardiac physiology and pathology. In this review, we summarize various functions of ncRNAs and highlight the recent literature on interactions between ncRNAs with an emphasis on cardiovascular disease regulation. Furthermore, as the broad-spectrum of ncRNAs potentially establishes new avenues for therapeutic development targeting CVDs, we discuss the innovative prospects of ncRNAs as therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Bruno Moukette
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nipuni P Barupala
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tatsuya Aonuma
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Marisa Sepulveda
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Satoshi Kawaguchi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States; Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, United States; Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
12
|
Shi H, Sun F, Yang T, Peng M, Wang M, Zhang Y, Wang Y, Dong C, Yan Z, Si G, Wang W, Li Y. Construction of a ceRNA immunoregulatory network related to the development of vascular dementia through a weighted gene coexpression network analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:858. [PMID: 34164492 PMCID: PMC8184445 DOI: 10.21037/atm-21-1717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background To date, vascular dementia (VaD) lacks effective treatment in clinical practice. There is also growing evidence that VaD may be closely related to the immune response. The development of high-throughput technology, and the recently discovered group of new mediators called competitive endogenous RNAs (ceRNA), provides a unique opportunity to study the immunomodulation of VaD. Methods In this study, we used gene expression profiles in the Gene Expression Omnibus (GEO) database to obtain immune-related gene coexpression modules through a weighted gene coexpression network analysis (WGCNA) and gene enrichment analysis. We extracted and merged long non-coding RNA (lncRNA) and microRNA (miRNA) expressions from the GEO database and mapped them with related databases. Subsequently, we used Cytoscape to construct a lncRNA-miRNA-mRNA network, and then we performed an enrichment analysis on the mRNAs in the network to determine their regulatory function. Subsequently, we used an ImmuCellAI immune infiltration analysis and constructed a ceRNA sub-network of related immune cells. Finally, we conducted a gene set enrichment analysis (GSEA) to determine the potential regulatory pathways of the key factors. Results As a result, we identified the blue module as the key module of immunity and constructed the related CeRNA network. Immune infiltration analysis showed that natural killer T (NKT) cells may be the key immune cells of VaD. Using a Pearson correlation analysis, we identified that B4GALT1, PPP1R3B, MICB, HHAT, DSC2, DNA2, SCARA3, and lncRNA NEAT1 may be the key factors of VaD. Our subsequent GSEA analysis showed that lncRNA NEAT1 may be regulated by NK cells and toll-like receptors. Conclusions Our research provides new therapeutic targets for vascular dementia from the immunological perspective for the first time, including B4GALT1, PPP1R3B, MICB, HHAT, DSC2, DNA2, SCARA3, and lncRNA NEAT1, and our research hopes to provide new treatment options for VaD.
Collapse
Affiliation(s)
- Hongshuo Shi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengshan Sun
- Department of Encephalopathy, Jinan Traditional Chinese Medicine Hospital, Jinan, China
| | - Tiantian Yang
- Department of Traditional Chinese Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Min Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengda Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaojun Yan
- Department of Psychosomatic Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guomin Si
- Department of Traditional Chinese Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenbo Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Orthopaedics, The 8th Clinical College (Weihai Central Hospital), Qingdao University, Qingdao, China
| | - Yujie Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Ghafouri-Fard S, Abak A, Shoorei H, Mohaqiq M, Majidpoor J, Sayad A, Taheri M. Regulatory role of microRNAs on PTEN signaling. Biomed Pharmacother 2020; 133:110986. [PMID: 33166764 DOI: 10.1016/j.biopha.2020.110986] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) gene encodes a tumor suppressor protein which is altered in several malignancies. This protein is a negative regulator of the PI3K/AKT signaling. Several transcription factors regulate the expression of PTEN in positive or negative directions. Moreover, numerous microRNAs (miRNAs) have functional interactions with PTEN and inhibit its expression. Suppression of PTEN can attenuate the response of cancer cells to chemotherapeutic agents. Based on the critical role of this tumor suppressor gene, the identification of negative regulators of its expression has practical significance particularly in the prevention and management of cancer. Meanwhile, the interaction between miRNAs and PTEN has functional consequences in non-malignant disorders including myocardial infarction, osteoporosis, cerebral ischemic stroke, and recurrent abortion. In the present review, we describe the role of miRNAs in the regulation of expression and activity of PTEN.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|