1
|
Chen X, Zhang Q, Lu M, Feng Q, Qin L, Liao S. Prenatal finding of isolated ventricular septal defect: genetic association, outcomes and counseling. Front Genet 2024; 15:1447216. [PMID: 39415979 PMCID: PMC11479991 DOI: 10.3389/fgene.2024.1447216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The innovation in ultrasound has greatly promoted the prenatal diagnosis of ventricular septal defect. As a minor lesion of congenital heart disease, the prenatal genetic counseling of isolated ventricular septal defect faces some challenges, including the true genetic correlationship, selection of appropriated testing methods to identify deleterious mutations, and avoidance of overdiagnosis and overintervention. Researchers have explored the prenatal diagnosis efficiency of commonly used cytogenetic and molecular genetic technologies. Small insertions/deletions and monogenic variants with phenotypic heterogeneity play important role and contribute to the comprehend of pathogenesis. Isolated ventricular septal defect fetuses without genetic finding and extracardiac structural abnormality generally have good pregnancy outcome. Long-term follow-up data is needed to describe the comprehensive map, such as the potential missed diagnosis especially late-onset syndromes, the impact on the quality of life and life expectancy. When conducting prenatal genetic counseling, strict adherence to ethical principles is needed to ensure that the rights of all parties involved are fully protected. Clinicians should carefully evaluate the risks and benefits and provide parents with sufficient information and advice to enable them to make informed decisions.
Collapse
Affiliation(s)
- Xin Chen
- Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, China
| | - Qian Zhang
- Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Man Lu
- Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qiuxia Feng
- National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, China
- Reproduction Medical Center, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Litao Qin
- Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shixiu Liao
- Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Li X, Xie L, Dai J, Zhou X, Chen T, Mao W. A whole-exome sequencing study of patent foramen ovale: investigating genetic variants and their association with cardiovascular disorders. Front Genet 2024; 15:1405307. [PMID: 38808331 PMCID: PMC11130352 DOI: 10.3389/fgene.2024.1405307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Background Patent foramen ovale (PFO) has a genetic predisposition and is closely associated with cryptogenic stroke (CS), migraine, decompression sickness, and hypoxemia. Identifying PFO-related mutant genes through whole-exome sequencing (WES) can help in the early recognition of cardiovascular genetic risk factors, guide timely clinical intervention, and reduce the occurrence of cardiovascular events. Methods We analyzed mutant genes from ClinVar and OMIM databases. WES was performed on 25 PFO patients from Zhejiang Provincial Hospital of Chinese Medicine. Pathogenicity of variants was evaluated using American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology. (AMP) guidelines. Results In ClinVar (4 Feb 2023), 113 coding gene mutations were found, including 83 associated with PFO. From OMIM (18 Apr 2023), 184 gene mutations were analyzed, with 110 mutant coding genes. WES identified pathogenic mutations in two of 25 PFO patients (8%). LDLR, SDHC, and NKX2-5 genes were linked to PFO and primarily involved in myocardial tissue function. NKX2-5 may play a crucial role in PFO development, interacting with NOTCH1, GATA4, MYH6, SCN5A signaling pathways regulating cardiomyocyte characteristics. Conclusion We identified pathogenic mutations in LDLR, SDHC, and NKX2-5 genes, implying their role in PFO development. Functional enrichment analysis revealed NKX2-5's interaction with signaling pathways regulating cardiomyocyte function. These findings enhance our understanding of PFO's genetic basis, suggesting potential therapeutic targets for future research.
Collapse
Affiliation(s)
- Xinyi Li
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingling Xie
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jin Dai
- Cardiovascular Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinbin Zhou
- Cardiovascular Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Tingting Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wei Mao
- Department of Cardiology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Integrative Chinese and Western Medicine for Diagnosis and Treatment of Circulatory Diseases, Hangzhou, China
| |
Collapse
|
3
|
Ma Q, Yang Y, Liu Y. Associations between NKX2-5 gene polymorphisms and congenital heart disease in the Chinese Tibetan population. Am J Transl Res 2022; 14:8407-8415. [PMID: 36505279 PMCID: PMC9730064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The pathogenesis of congenital heart disease (CHD) has not been fully elucidated, and this study considers the interaction between inheritance and the environment as the main cause of CHD. Previous studies have found that the incidence of CHD in the Tibetan plateau population is significantly higher than in low-altitude populations. Numerous reports have confirmed that NKX2-5 gene mutations can lead to coronary heart disease, but the relationship between NKX2-5 and Tibetan nationality has not yet been reported. OBJECTIVE To explore the relationship between NKX2-5 gene polymorphisms and CHD in Tibetan people. METHODS Blood samples were collected retrospectively from Tibetan patients diagnosed with CHD as well as healthy Tibetans, and the exons of NKX2-5 were sequenced. The MassARRAY technique was used to detect and genotype candidate tag single nucleotide polymorphisms (SNPs) in the non-coding regions of NKX2-5. RESULTS Exon sequencing revealed no difference in the coding regions of the NKX2-5 gene between the CHD and control groups. In the non-coding regions of NKX2-5, rs6882776 and rs2546741 differed significantly between the two groups. Strong linkage disequilibrium was found between the selected sites of NKX2-5. CONCLUSIONS The NKX2-5 exons do not associate with CHD in Tibetans. Rs6882776 and rs2546741 in the non-coding regions of NKX2-5 may protect against CHD in Tibetans. The NKX2-5 haplotype associated with CHD occurrence in the Tibetan population.
Collapse
Affiliation(s)
- Qiang Ma
- High Altitude Medical Research Center, Medical College of Qinghai University16 Kunlun Road, Xining 810001, Qinghai, China,Department of Pathology, Sunshine Union HospitalYingqian Road, Weifang 261000, Shandong, China
| | - Yingzhong Yang
- High Altitude Medical Research Center, Medical College of Qinghai University16 Kunlun Road, Xining 810001, Qinghai, China
| | - Yongnian Liu
- High Altitude Medical Research Center, Medical College of Qinghai University16 Kunlun Road, Xining 810001, Qinghai, China
| |
Collapse
|
4
|
Li H, Wang J, Huang K, Zhang T, Gao L, Yang S, Yi W, Niu Y, Liu H, Wang Z, Wang G, Tao K, Wang L, Cai K. Nkx2.5 Functions as a Conditional Tumor Suppressor Gene in Colorectal Cancer Cells via Acting as a Transcriptional Coactivator in p53-Mediated p21 Expression. Front Oncol 2021; 11:648045. [PMID: 33869046 PMCID: PMC8047315 DOI: 10.3389/fonc.2021.648045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
NK2 homeobox 5 (Nkx2.5), a homeobox-containing transcription factor, is associated with a spectrum of congenital heart diseases. Recently, Nkx2.5 was also found to be differentially expressed in several kinds of tumors. In colorectal cancer (CRC) tissue and cells, hypermethylation of Nkx2.5 was observed. However, the roles of Nkx2.5 in CRC cells have not been fully elucidated. In the present study, we assessed the relationship between Nkx2.5 and CRC by analyzing the expression pattern of Nkx2.5 in CRC samples and the adjacent normal colonic mucosa (NCM) samples, as well as in CRC cell lines. We found higher expression of Nkx2.5 in CRC compared with NCM samples. CRC cell lines with poorer differentiation also had higher expression of Nkx2.5. Although this expression pattern makes Nkx2.5 seem like an oncogene, in vitro and in vivo tumor suppressive effects of Nkx2.5 were detected in HCT116 cells by establishing Nkx2.5-overexpressed CRC cells. However, Nkx2.5 overexpression was incapacitated in SW480 cells. To further assess the mechanism, different expression levels and mutational status of p53 were observed in HCT116 and SW480 cells. The expression of p21WAF1/CIP1, a downstream antitumor effector of p53, in CRC cells depends on both expression level and mutational status of p53. Overexpressed Nkx2.5 could elevate the expression of p21WAF1/CIP1 only in CRC cells with wild-type p53 (HCT116), rather than in CRC cells with mutated p53 (SW480). Mechanistically, Nkx2.5 could interact with p53 and increase the transcription of p21WAF1/CIP1 without affecting the expression of p53. In conclusion, our findings demonstrate that Nkx2.5 could act as a conditional tumor suppressor gene in CRC cells with respect to the mutational status of p53. The tumor suppressive effect of Nkx2.5 could be mediated by its role as a transcriptional coactivator in wild-type p53-mediated p21WAF1/CIP1 expression.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyang Yi
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|