1
|
Fulek M, Wieckiewicz M, Szymanska-Chabowska A, Gac P, Poreba R, Markiewicz-Gorka I, Wojakowska A, Mazur G, Martynowicz H. Inflammatory Markers and Sleep Architecture in Sleep Bruxism-A Case-Control Study. J Clin Med 2024; 13:687. [PMID: 38337381 PMCID: PMC10856576 DOI: 10.3390/jcm13030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Sleep bruxism (SB) is a common sleep-related movement behavior with a multifaceted etiology and a deficiently understood pathophysiology. A recent hypothesis suggests a link between SB and systemic inflammation. The scope of the study was to determine whether bruxers have altered sleep structure and different levels of inflammatory parameters compared to nonbruxers. Methods: A total of 83 adults underwent full-night polysomnography. The polysomnograms were evaluated using the American Academy of Sleep Medicine (AASM) guidelines. Then, the blood samples were obtained from the participants by venipuncture and the analyses were performed. The study group was divided based on bruxism episode index (BEI) into two groups: BEI ≤ 4 and BEI > 4. Results: In comparison with nonbruxers, the oxygen desaturation index (ODI) was significantly higher in severe bruxers (7.5 ± 11.08 vs. 3.33 ± 5.75, p < 0.005), as well as the arousal parameters (7.77 ± 4.68 vs. 4.03 ± 2.97, p < 0.001), and the mean oxygen desaturation (3.49 ± 0.69 vs. 3.01 ± 0.67, p < 0.05). Moreover, the differences in sleep architecture and deprivation of the deep sleep phase were observed, the non-REM sleep stage 3 was significantly shorter in severe bruxers (p < 0.03). Differences were also noted in non-REM sleep stage 1 and REM sleep phase. In the investigated group, there were no statistical differences in inflammatory cytokines levels between bruxers and nonbruxers. Conclusions: Sleep bruxism is associated with sleep structure alterations and may be associated with deep sleep phase deprivation. The inflammatory markers are not linearly correlated with the severity of sleep bruxism expressed as BEI.
Collapse
Affiliation(s)
- Michal Fulek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (A.S.-C.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 26 Krakowska St., 50-425 Wroclaw, Poland;
| | - Anna Szymanska-Chabowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (A.S.-C.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Pawel Gac
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wrocław, Poland; (P.G.); (I.M.-G.)
| | - Rafal Poreba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (A.S.-C.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Iwona Markiewicz-Gorka
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wrocław, Poland; (P.G.); (I.M.-G.)
| | - Anna Wojakowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (A.S.-C.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (A.S.-C.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (A.S.-C.); (R.P.); (A.W.); (G.M.); (H.M.)
| |
Collapse
|
2
|
Takeda Y, Kimura F, Takasawa S. Possible Molecular Mechanisms of Hypertension Induced by Sleep Apnea Syndrome/Intermittent Hypoxia. Life (Basel) 2024; 14:157. [PMID: 38276286 PMCID: PMC10821044 DOI: 10.3390/life14010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Intermittent hypoxia (IH) is a central characteristic of sleep apnea syndrome (SAS), and it subjects cells in the body to repetitive apnea, chronic hypoxia, oxygen desaturation, and hypercapnia. Since SAS is linked to various serious cardiovascular complications, especially hypertension, many studies have been conducted to elucidate the mechanism of hypertension induced by SAS/IH. Hypertension in SAS is associated with numerous cardiovascular disorders. As hypertension is the most common complication of SAS, cell and animal models to study SAS/IH have developed and provided lots of hints for elucidating the molecular mechanisms of hypertension induced by IH. However, the detailed mechanisms are obscure and under investigation. This review outlines the molecular mechanisms of hypertension in IH, which include the regulation systems of reactive oxygen species (ROS) that activate the renin-angiotensin system (RAS) and catecholamine biosynthesis in the sympathetic nervous system, resulting in hypertension. And hypoxia-inducible factors (HIFs), Endotheline 1 (ET-1), and inflammatory factors are also mentioned. In addition, we will discuss the influences of SAS/IH in cardiovascular dysfunction and the relationship of microRNA (miRNA)s to regulate the key molecules in each mechanism, which has become more apparent in recent years. These findings provide insight into the pathogenesis of SAS and help in the development of future treatments.
Collapse
Affiliation(s)
- Yoshinori Takeda
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan;
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan;
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| |
Collapse
|