1
|
Tan Y, Cao W, Yang L, Gong X, Li H. Structural characterization of the glucan from Gastrodia elata Blume and its ameliorative effect on DSS-induced colitis in mice. Int J Biol Macromol 2024; 275:133718. [PMID: 38977052 DOI: 10.1016/j.ijbiomac.2024.133718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The polysaccharide glucan was extracted from Gastrodia elata Blume, and its structural characterizations and beneficial effects against acute dextran sulfate sodium (DSS)-induced ulcerative colitis were investigated. The results showed that a polysaccharide GP with a molecular weight of 811.0 kDa was isolated from G. elata Blume. It had a backbone of α-D-1,4-linked glucan with branches of α-d-glucose linked to the C-6 position. GP exhibited protective effects against DSS-induced ulcerative colitis, and reflected in ameliorating weight loss and pathological damages in mice, increasing colon length, inhibiting the expression of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), decreasing the levels of inflammatory related proteins NLRP3 and ASC, and elevating the anti-inflammatory cytokine interleukin-10 (IL-10) level in mouse colon tissues. GP supplementation also reinforced the intestinal barrier by promoting the expression of ZO-1, Occludin, and MUC2 of colon tissues, and positively regulated intestinal microbiota. Thus, GP treatment possessed a significant improvement in ulcerative colitis in mice, and it was expected to be developed as a functional food.
Collapse
Affiliation(s)
- Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| | - Wanxiu Cao
- Marine biomedical research institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Lu Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Xinwei Gong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China.
| |
Collapse
|
2
|
Zhang Y, Ye P, Zhu H, Gu L, Li Y, Feng S, Zeng Z, Chen Q, Zhou B, Xiong X. Neutral polysaccharide from Gastrodia elata alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis-mediated neuroinflammation via the NRF2/HO-1 signaling pathway. CNS Neurosci Ther 2024; 30:e14456. [PMID: 37752806 PMCID: PMC10916450 DOI: 10.1111/cns.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
AIMS The crosstalk between ferroptosis and neuroinflammation considerably impacts the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Neutral polysaccharide from Gastrodia elata (NPGE) has shown significant effects against oxidative stress and inflammation. This study investigated the potential effects of NPGE on CIRI neuropathology. METHODS The effects of NPGE were studied in a mouse model of ischemic stroke (IS) and in oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cells. RESULTS NPGE treatment decreased neurological deficits, reduced infarct volume, and alleviated cerebral edema in IS mice, and promoted the survival of OGD/R-induced HT22 cells. Mechanistically, NPGE treatment alleviated neuronal ferroptosis by upregulating GPX4 levels, lowering reactive oxygen species (ROS), malondialdehyde (MDA), and Fe2+ excessive hoarding, and meliorating GSH levels and SOD activity. Additionally, it inhibited neuroinflammation by down-regulating the level of IL-1β, IL-6, TNF-α, NLRP3, and HMGB1. Meanwhile, NPGE treatment alleviated ferroptosis and inflammation in erastin-stimulated HT22 cells. Furthermore, NPGE up-regulated the expression of NRF2 and HO-1 and promoted the translocation of NRF2 into the nucleus. Using the NRF2 inhibitor brusatol, we verified that NRF2/HO-1 signaling mediated the anti-ferroptotic and anti-inflammatory properties of NPGE. CONCLUSION Collectively, our results demonstrate the protective effects of NPGE and highlight its therapeutic potential as a drug component for CIRI treatment.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Peng Ye
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lijuan Gu
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yuntao Li
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Department of Neurosurgery, The Affiliated Huzhou HospitalZhejiang University School of Medicine (Huzhou Central Hospital)HuzhouChina
| | - Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qianxue Chen
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Benhong Zhou
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
3
|
Gao H, Ding W. Effect and mechanism of acupuncture on endogenous and exogenous stem cells in disease treatment: A therapeutic review. Life Sci 2023; 331:122031. [PMID: 37598978 DOI: 10.1016/j.lfs.2023.122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Acupuncture is effective intervention, particularly in nerve, endocrine diseases and immune diseases. The potential mechanisms mediating the effects of acupuncture include anti-inflammatory and oxidative stress, inhibition of cell apoptosis, and stimulation of the proliferation and differentiation of endogenous stem cells. Traditional Chinese medicine combined with stem cell transplantation have a synergistic effect in the treatment of diseases. Increasing studies have found that acupuncture can promote the proliferation, differentiation, homing and survival of exogenous stem cells. This article reviews the mechanism of acupuncture and Chinese herbs on endogenous stem cells and exogenous stem cells in the combined intervention of diverse disorders and the major problems in past 15 years, which will provide a reference for future clinical research.
Collapse
Affiliation(s)
- Hongyan Gao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Liu X, Dou Y, Hao T, Wang M, Yang L, Zheng H, Liu H, Dou H. Assessment of the Effects of Structural Modification of Gastrodia elata Polysaccharide on Anti-Breast Cancer Activity Using Asymmetrical Flow Field-Flow Fractionation. Molecules 2023; 28:4669. [PMID: 37375222 DOI: 10.3390/molecules28124669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrodia elata ("Tian Ma" in Chinese) is used as a food and medical ingredient in traditional Chinese medicine. In this study, to enhance the anti-breast cancer activity of Gastrodia elata polysaccharide (GEP), GEPs were modified via sulfidation (SGEP) and acetylation (AcGEP). The physicochemical properties (such as solubility and substitution degree) and structural information (such as molecular weight Mw and radius of gyration Rg) of GEP derivatives were determined by Fourier transformed infrared (FTIR) spectroscopy and asymmetrical flow field-flow fractionation (AF4) coupled online with multiangle light scattering (MALS) and differential refractive index (dRI) detectors (AF4-MALS-dRI). The effects of the structural modification of GEP on the proliferation, apoptosis, and cell cycle of MCF-7 cell were studied systematically. The ability of MCF-7 cell for the uptake of GEP was studied by laser scanning confocal microscopy (LSCM). The results suggested that the solubility and anti-breast cancer activity of GEP were enhanced and the average Rg and Mw of GEP decreased after chemical modification. The AF4-MALS-dRI results showed that the chemical modification process simultaneously caused the degradation and aggregation of GEPs. The LSCM results revealed that more SGEP can enter the MCF-7 cell interior compared with AcGEP. The results indicated that the structure of AcGEP could play a dominating role in antitumor activity. The data obtained in this work can be used as a starting point for investigating the structure-bioactivity of GEPs.
Collapse
Affiliation(s)
- Xiaoying Liu
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Yuwei Dou
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Tingting Hao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials and Science, Hebei University, Baoding 071002, China
| | - Mu Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Liu Yang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Hailiang Zheng
- Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Hongmei Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials and Science, Hebei University, Baoding 071002, China
| | - Haiyang Dou
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| |
Collapse
|
5
|
Huo J, Lei M, Li F, Hou J, Zhang Z, Long H, Zhong X, Liu Y, Xie C, Wu W. Structural Characterization of a Polysaccharide from Gastrodia elata and Its Bioactivity on Gut Microbiota. Molecules 2021; 26:4443. [PMID: 34361604 PMCID: PMC8348156 DOI: 10.3390/molecules26154443] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
A novel homogeneous polysaccharide named GEP-1 was isolated and purified from Gastrodia elata (G. elata) by hot-water extraction, ethanol precipitation, and membrane separator. GEP-1, which has a molecular weight of 20.1 kDa, contains a polysaccharide framework comprised of only glucose. Methylation and NMR analysis showed that GEP-1 contained 1,3,6-linked-α-Glcp, 1,4-linked-α-Glcp, 1,4-linked-β-Glcp and 1,4,6-linked-α-Glcp. Interestingly, GEP-1 contained citric acid and repeating p-hydroxybenzyl alcohol as one branch. Furthermore, a bioactivity test showed that GEP-1 could significantly promote the growth of Akkermansia muciniphila (A. muciniphila) and Lacticaseibacillus paracasei (L.paracasei) strains. These results implied that GEP-1 might be useful for human by modulating gut microbiota.
Collapse
Affiliation(s)
- Jiangyan Huo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.H.); (M.L.); (F.L.); (J.H.); (Z.Z.); (H.L.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.H.); (M.L.); (F.L.); (J.H.); (Z.Z.); (H.L.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.H.); (M.L.); (F.L.); (J.H.); (Z.Z.); (H.L.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.H.); (M.L.); (F.L.); (J.H.); (Z.Z.); (H.L.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.H.); (M.L.); (F.L.); (J.H.); (Z.Z.); (H.L.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.H.); (M.L.); (F.L.); (J.H.); (Z.Z.); (H.L.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianchun Zhong
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.H.); (M.L.); (F.L.); (J.H.); (Z.Z.); (H.L.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yameng Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.H.); (M.L.); (F.L.); (J.H.); (Z.Z.); (H.L.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cen Xie
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.H.); (M.L.); (F.L.); (J.H.); (Z.Z.); (H.L.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (J.H.); (M.L.); (F.L.); (J.H.); (Z.Z.); (H.L.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Anti-cerebral ischemia reperfusion injury of polysaccharides: A review of the mechanisms. Biomed Pharmacother 2021; 137:111303. [PMID: 33517189 DOI: 10.1016/j.biopha.2021.111303] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cerebral ischemia-reperfusion injury can lead to a series of serious brain diseases and cause death or different degrees of disability. Polysaccharide is a kind of biological macromolecule with multiple pharmacological activities and has been proven that it may be used for the treatment of cerebral I/R injury in the future. By sorting out all relevant research from 2000 to 2020, we selected 74 references and identified 22 kinds of polysaccharides. Almost all of these polysaccharides are extracted from traditional Chinese medicine. Research shows that these polysaccharides can improve cerebral ischemia-reperfusion injury through anti-oxidative stress, inhibiting the neuroinflammation, glutamate neurotoxicity and neuronal apoptosis, and exerting neurotrophic effect. The specific mechanisms include clearing ROS and RNS, inhibiting the expression of inflammatory factors, maintaining mitochondrial homeostasis and blocking caspase cascade, regulating NMDA receptor and promoting angiogenesis. We hoped this review is instructive for researchers to design, research and develop polysaccharides.
Collapse
|
7
|
Zhu H, Liu C, Hou J, Long H, Wang B, Guo D, Lei M, Wu W. Gastrodia elata Blume Polysaccharides: A Review of Their Acquisition, Analysis, Modification, and Pharmacological Activities. Molecules 2019; 24:E2436. [PMID: 31269719 PMCID: PMC6651794 DOI: 10.3390/molecules24132436] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 06/26/2019] [Indexed: 01/02/2023] Open
Abstract
Gastrodia elata Blume (G. elata) is a valuable Traditional Chinese Medicine (TCM) with a wide range of clinical applications. G. elata polysaccharides, as one of the main active ingredients of G. elata, have interesting extraction, purification, qualitative analysis, quantitative analysis, derivatization, and pharmacological activity aspects, yet a review of G. elata polysaccharides has not yet been published. Based on this, this article summarizes the progress of G. elata polysaccharides in terms of the above aspects to provide a basis for their further research and development.
Collapse
Affiliation(s)
- Haodong Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De'an Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Zhang T, Yang Y, Liang Y, Jiao X, Zhao C. Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients 2018; 10:E1055. [PMID: 30096921 PMCID: PMC6116026 DOI: 10.3390/nu10081055] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of modern society, many chronic diseases are increasing including diabetes, obesity, cardiovascular diseases, etc., which further cause an increased death rate worldwide. A high caloric diet with reduced natural polysaccharides, typically indigestible polysaccharides, is considered a health risk factor. With solid evidence accumulating that indigestible polysaccharides can effectively prevent and/or ameliorate symptoms of many chronic diseases, we give a narrative review of many natural polysaccharides extracted from various food resources which mainly contribute their health beneficial functions via intestinal fermentation.
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yang Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Xu Jiao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
9
|
Combination of Constraint-Induced Movement Therapy with Electroacupuncture Improves Functional Recovery following Neonatal Hypoxic-Ischemic Brain Injury in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8638294. [PMID: 29568769 PMCID: PMC5820667 DOI: 10.1155/2018/8638294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Aim Neonatal hypoxic-ischemia (HI) due to insufficient oxygen supply and blood flow during the prenatal and postnatal periods can cause cerebral palsy, a serious developmental condition. The purpose of this study was to investigate the efficacy of combining constraint-induced movement therapy (CIMT) and electroacupuncture to treat rat neonatal HI brain injury. Methods The left common carotid arteries of postnatal day 7 rats were ligated to induce HI brain injury, and the neonates were kept in a hypoxia chamber containing 8% oxygen for 2 hrs. Electroacupuncture at Baihui (GV 20) and Zusanli (ST 36) was performed concurrently with CIMT 3 weeks after HI induction for 4 weeks. Results Motor asymmetry after HI was significantly improved in the CIMT and electroacupuncture combination group, but HI lesion size was not improved. The combination of CIMT and electroacupuncture after HI injury increases NeuN and decreases GFAP levels in the cerebral cortex, suggesting that this combination treatment inversely regulates neurons and astrocytes. In addition, the combination treatment group reduced the level of cleaved caspase-3, a crucial mediator of apoptosis, in the cortex. Conclusions Our findings indicate that a combination of CIMT and electroacupuncture is an effective method to treat hemiplegia due to neonatal HI brain injury.
Collapse
|