1
|
Yin S, Song G, Gao N, Gao H, Zeng Q, Lu P, Zhang Q, Xu K, He J. Identifying Genetic Architecture of Carcass and Meat Quality Traits in a Ningxiang Indigenous Pig Population. Genes (Basel) 2023; 14:1308. [PMID: 37510213 PMCID: PMC10378861 DOI: 10.3390/genes14071308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Ningxiang pig is a breed renowned for its exceptional meat quality, but it possesses suboptimal carcass traits. To elucidate the genetic architecture of meat quality and carcass traits in Ningxiang pigs, we assessed heritability and executed a genome-wide association study (GWAS) concerning carcass length, backfat thickness, meat color parameters (L.LD, a.LD, b.LD), and pH at two postmortem intervals (45 min and 24 h) within a Ningxiang pig population. Heritability estimates ranged from moderate to high (0.30~0.80) for carcass traits and from low to high (0.11~0.48) for meat quality traits. We identified 21 significant SNPs, the majority of which were situated within previously documented QTL regions. Furthermore, the GRM4 gene emerged as a pleiotropic gene that correlated with carcass length and backfat thickness. The ADGRF1, FKBP5, and PRIM2 genes were associated with carcass length, while the NIPBL gene was linked to backfat thickness. These genes hold the potential for use in selective breeding programs targeting carcass traits in Ningxiang pigs.
Collapse
Affiliation(s)
- Shishu Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410128, China
| | - Ning Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410128, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Peng Lu
- Center of Ningxiang Animal Husbandry and Fishery Affairs, Ningxiang 410625, China
| | - Qin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Kang Xu
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410128, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Exosomal CTCF Confers Cisplatin Resistance in Osteosarcoma by Promoting Autophagy via the IGF2-AS/miR-579-3p/MSH6 Axis. JOURNAL OF ONCOLOGY 2022; 2022:9390611. [PMID: 35693981 PMCID: PMC9175095 DOI: 10.1155/2022/9390611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Cancer-derived exosomes participate in carcinogenesis and progression of cancers, including metastasis and drug-resistance. Of note, CTCF has been suggested to induce drug resistance in various cancers. Herein, we aim to investigate the role of cisplatin- (CDDP-) resistant osteosarcoma- (OS-) derived exosomal CTCF in OS cell resistance to CDDP and its mechanistic basis. Differentially expressed transcription factors, long noncoding RNAs (lncRNAs), miRNAs, and genes in OS were retrieved using bioinformatics approaches. Exosomes were extracted from CDDP-resistant OS cells and then cocultured with parental OS cells, followed by lentiviral transduction to manipulate the expression of CTCF, IGF2-AS, miR-579-3p, and MSH6. We assessed the in vitro and in vivo effects on malignant phenotypes, autophagy, CDDP sensitivity, and tumor formation of OS cells. It was established that CTCF and IGF2-AS were highly expressed in CDDP-resistant OS cells, and the CDDP-resistant OS cell-derived exosomal CTCF enhanced IGF2-AS transcription. CDDP-resistant OS-derived exosomes transmitted CTCF to OS cells and increased CDDP resistance in OS cells by activating an autophagy-dependent pathway. Mechanistically, CTCF activated IGF2-AS transcription and IGF2-AS competitively bound to miR-579-3p to upregulate MSH6 expression. Additionally, the promoting function of exosomal CTCF-mediated IGF2-AS/miR-579-3p/MSH6 in OS cell resistance to CDDP was confirmed in vivo. Taken together, CDDP-resistant OS-derived exosomal CTCF enhanced resistance of OS cells to CDDP via activating the autophagy-dependent pathway, providing a potential therapeutic consideration for OS treatment.
Collapse
|
3
|
Zhang Z, Li N, Wei X, Chen B, Zhang Y, Zhao Y, Hu X, Hou S. GRM4 inhibits the proliferation, migration, and invasion of human osteosarcoma cells through interaction with CBX4. Biosci Biotechnol Biochem 2020; 84:279-289. [PMID: 31581881 DOI: 10.1080/09168451.2019.1673147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
In recent years, the survey of metabolic glutamate receptor 4 (GRM4) in tumor biology has been gradually concerned. There are currently few studies on GRM4 in osteosarcoma, and the biological function is not clear. Analysis of TCGA database showed that there was no substantial deviation in the expression of GRM4 between osteosarcoma and normal tissues. In the subsequent experiments, there is no significant difference in either mRNA or protein levels among immortalized human osteoblasts and various osteosarcoma cells. With the overexpression of GRM4, cell proliferation, migration and invasion were inhibited obviously. It was further revealed that GRM4 can interact with CBX4 to restrict the nuclear localization of CBX4 and affect the transcriptional activity of HIF-1α. This is the evidence supporting the interaction between GRM4 and CBX4, which could inhibit the malignant behavior of osteosarcoma cells through the GRM4/CBX4/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Zengliang Zhang
- Department of orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Nan Li
- Department of orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Xing Wei
- Aerospace Center Hospital, Beijing, China
| | - Bingyao Chen
- Department of orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yinglong Zhang
- Department of orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yantao Zhao
- Department of orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China
| | - Xiantong Hu
- Department of orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- Beijing Engineering Research Center of Orthopaedic Implants, Beijing, China
| | - Shuxun Hou
- Department of orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- Orthopedic Institute of PLA, Beijing, China
| |
Collapse
|
4
|
Huang T, Zhang M, Yan G, Huang X, Chen H, Zhou L, Deng W, Zhang Z, Qiu H, Ai H, Huang L. Genome-wide association and evolutionary analyses reveal the formation of swine facial wrinkles in Chinese Erhualian pigs. Aging (Albany NY) 2019; 11:4672-4687. [PMID: 31306098 PMCID: PMC6660038 DOI: 10.18632/aging.102078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/01/2019] [Indexed: 04/12/2023]
Abstract
Wrinkles are uneven concave-convex folds, ridges or creases in skin. Facial wrinkles appear in head, typically increasing along with aging. However in several Chinese indigenous pigs, such as Erhualian pigs, rich facial wrinkles have been generated during the growth stages as one of their breed characteristics. To investigate the genetic basis underlying the development of swine facial wrinkles, we estimated the folding extent of facial wrinkles in a herd of Erhualian pigs (n=332), and then conducted genome-wide association studies and multi-trait meta-analysis for facial wrinkles using 60K porcine chips. We found that facial wrinkles had high heritability estimates of ~0.7 in Erhualian pigs. Notably, only one genome-wide significant QTL was detected at 34.8 Mb on porcine chromosome 7. The most significant SNP rs80983858 located at the 3255-bp downstream of candidate gene GRM4, and the G allele was of benefit to increase facial wrinkles. Evolutionary and selection analyses suggested that the haplotypes containing G allele were under artificial selection, which was consistent with local animal sacrificial custom praying for longevity. Our findings made important clues for further deciphering the molecular mechanism of swine facial wrinkles formation, and shed light on the research of skin wrinkle development in human or other mammals.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Mingpeng Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Guorong Yan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Xiaochang Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Hao Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Liyu Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Wenjiang Deng
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Zhen Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Hengqing Qiu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Huashui Ai
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| |
Collapse
|
5
|
Identification of Pathogenic Genes and Transcription Factors in Osteosarcoma. Pathol Oncol Res 2019; 26:1041-1048. [PMID: 30982140 DOI: 10.1007/s12253-019-00645-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/19/2019] [Indexed: 01/09/2023]
Abstract
Osteosarcoma (OS) is an aggressive malignant tumor of the bones. Our study intended to identify and analyze potential pathogenic genes and upstream regulators for OS. We performed an integrated analysis to identify candidate pathogenic genes of OS by using three Gene Expression Omnibus (GEO) databases (GSE66673, GSE49003 and GSE37552). GO and KEGG enrichment analysis were utilized to predict the functional annotation and potential pathways of differentially expressed genes (DEGs). The OS-specific transcriptional regulatory network was established to study the crucial transcriptional factors (TFs) which target the DEGs in OS. From the three GEO datasets, we identified 759 DEGs between metastasis OS samples and non-metastasis OS samples. After GO and KEGG analysis, 'cell adhesion' (FDR = 1.27E-08), 'protein binding' (FDR = 1.13E-22), 'cytoplasm' (FDR = 5.63E-32) and 'osteoclast differentiation' (FDR = 0.000992221) were significantly enriched pathways for DEGs. HSP90AA1 exhibited a highest degree (degree = 32) and was enriched in 'pathways in cancer' and 'signal transduction'. BMP6, regulated by Pax-6, was enriched in the 'TGF-beta signaling pathway'. We indicated that BMP6 may be downregulated by Pax-6 in the non-metastasis OS samples. The up-regulated HSP90AA1 and down-regulated BMP6 and 'pathways in cancer' and 'signal transduction' were deduced to be involved in the pathogenesis of OS. The identified biomarkers and biological process in OS may provide foundation for further study.
Collapse
|
6
|
Hernandez-Pacheco N, Pino-Yanes M, Flores C. Genomic Predictors of Asthma Phenotypes and Treatment Response. Front Pediatr 2019; 7:6. [PMID: 30805318 PMCID: PMC6370703 DOI: 10.3389/fped.2019.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma is a complex respiratory disease considered as the most common chronic condition in children. A large genetic contribution to asthma susceptibility is predicted by the clustering of asthma and allergy symptoms among relatives and the large disease heritability estimated from twin studies, ranging from 55 to 90%. Genetic basis of asthma has been extensively investigated in the past 40 years using linkage analysis and candidate-gene association studies. However, the development of dense arrays for polymorphism genotyping has enabled the transition toward genome-wide association studies (GWAS), which have led the discovery of several unanticipated asthma genes in the last 11 years. Despite this, currently known risk variants identified using many thousand samples from distinct ethnicities only explain a small proportion of asthma heritability. This review examines the main findings of the last 2 years in genomic studies of asthma using GWAS and admixture mapping studies, as well as the direction of studies fostering integrative perspectives involving omics data. Additionally, we discuss the need for assessing the whole spectrum of genetic variation in association studies of asthma susceptibility, severity, and treatment response in order to further improve our knowledge of asthma genes and predictive biomarkers. Leveraging the individual's genetic information will allow a better understanding of asthma pathogenesis and will facilitate the transition toward a more precise diagnosis and treatment.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| |
Collapse
|
7
|
Huang CY, Hsueh YM, Chen LC, Cheng WC, Yu CC, Chen WJ, Lu TL, Lan KJ, Lee CH, Huang SP, Bao BY. Clinical significance of glutamate metabotropic receptors in renal cell carcinoma risk and survival. Cancer Med 2018; 7:6104-6111. [PMID: 30488581 PMCID: PMC6308098 DOI: 10.1002/cam4.1901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 01/14/2023] Open
Abstract
Accumulating evidence suggests the roles of glutamate metabotropic receptors (GRMs) in cancer, in addition to synaptic signalling. The present study assessed the associations of genetic variants in eight GRM genes with regard to risk and overall survival (OS) in 780 renal cell carcinoma (RCC) patients and controls. After adjustment for known risk factors, GRM5 rs7102764 T was associated with an increased risk of RCC (P = 0.006). Additional analysis has provided evidence that rs7102764 T was correlated with a higher expression of GRM5, which is consistently found to be upregulated in tumours, compared to normal tissues. Furthermore, the GRM3 rs701332 C, GRM4 rs2499707 T, and GRM4 rs4713742 T alleles were significantly associated with a poorer OS (P ≤ 0.030). The three loci were also observed to have strong cumulative effects on OS. Additional analysis has revealed a significant genotype‐expression correlation of rs2499707 T with increased GRM4 expression, which in turn leads to poorer OS in patients with RCC. GRMs might be involved in RCC development and progression, and genetic variants in GRMs might be promising biomarkers.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Department of Urology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.,Department of Urology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwa
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Kuo-Jin Lan
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|