O'Connor TE, Carpenter HE, Bidari S, Waters MF, Hedna VS. Role of inflammatory markers in Takayasu arteritis disease monitoring.
BMC Neurol 2014;
14:62. [PMID:
24678735 PMCID:
PMC4012521 DOI:
10.1186/1471-2377-14-62]
[Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/21/2014] [Indexed: 11/26/2022] Open
Abstract
Background
Takayasu arteritis (TA) is an idiopathic large-vessel vasculitis that can result in significant morbidity and mortality secondary to progressive stenosis and occlusion. Monitoring disease progression is crucial to preventing relapse, but is often complicated by the lack of clinical symptoms in the setting of active disease. Although acute phase reactants such as ESR and CRP are generally used as an indicator of inflammation and disease activity, mounting evidence suggests that these markers cannot reliably distinguish active from inactive TA.
Case presentation
We report a 24-year-old Hispanic female with a 5-year history of TA who presented with stroke-like symptoms and evidence of left MCA occlusion on imaging, despite a history of decreasing inflammatory markers. CTA revealed complete occlusion of the left common carotid artery, left subclavian, and left MCA from their origins. It also revealed a striking compensatory circulation supplying the left anterior circulation as well as the left subclavian as a response to progressive stenosis.
Conclusion
Monitoring ESR and CRP levels alone may not be a reliable method to evaluate disease progression in patients with TA, and should be taken in context with both patient’s clinical picture and the imaging. We recommend that serial imaging be performed regularly in the setting of active disease to monitor progression and allow for immediate therapy in response to evidence of disease advancement, with a relaxation of the imaging interval once the disease is presumed inactive.
Collapse