1
|
Liang M, Dong L, Deng YZ. Circadian Redox Rhythm in Plant-Fungal Pathogen Interactions. Antioxid Redox Signal 2022; 37:726-738. [PMID: 35044223 DOI: 10.1089/ars.2021.0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: Circadian-controlled cellular growth, differentiation, and metabolism are mainly achieved by a classical transcriptional-translational feedback loop (TTFL), as revealed by investigations in animals, plants, and fungi. Recent Advances: Recently, reactive oxygen species (ROS) have been reported as part of a cellular network synchronizing nontranscriptional oscillators with established TTFL components, adding complexity to regulatory mechanisms of circadian rhythm. Both circadian rhythm and ROS homeostasis have a great impact on plant immunity as well as fungal pathogenicity, therefore interconnections of these two factors are implicit in plant-fungus interactions. Critical Issues: In this review, we aim to summarize the recent advances in circadian-controlled ROS homeostasis, or ROS-modulated circadian clock, in plant-fungus pathosystems, particularly using the rice (Oryza sativa) blast fungus (Magnaporthe oryzae) pathosystem as an example. Understanding of such bidirectional interaction between the circadian timekeeping machinery and ROS homeostasis/signaling would provide a theoretical basis for developing disease control strategies for important plants/crops. Future Directions: Questions remain unanswered about the detailed mechanisms underlying circadian regulation of redox homeostasis in M. oryzae, and the consequent fungal differentiation and death in a time-of-day manner. We believe that the rice-M. oryzae pathobiosystem would provide an excellent platform for investigating such issues in circadian-ROS interconnections in a plant-fungus interaction context. Antioxid. Redox Signal. 37, 726-738.
Collapse
Affiliation(s)
- Meiling Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lihong Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Yuan P, Qian W, Jiang L, Jia C, Ma X, Kang Z, Liu J. A secreted catalase contributes to Puccinia striiformis resistance to host-derived oxidative stress. STRESS BIOLOGY 2021; 1:22. [PMID: 37676381 PMCID: PMC10441885 DOI: 10.1007/s44154-021-00021-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 09/08/2023]
Abstract
Plants can produce reactive oxygen species (ROS) to counteract pathogen invasion, and pathogens have also evolved corresponding ROS scavenging strategies to promote infection and pathogenicity. Catalases (CATs) have been found to play pivotal roles in detoxifying H2O2 formed by superoxide anion catalyzed by superoxide dismutases (SODs). However, few studies have addressed H2O2 removing during rust fungi infection of wheat. In this study, we cloned a CAT gene PsCAT1 from Puccinia striiformis f. sp. tritici (Pst), which encodes a monofunctional heme-containing catalase. PsCAT1 exhibited a high degree of tolerance to pH and temperature, and forms high homopolymers.Heterologous complementation assays in Saccharomyces cerevisiae reveal that the signal peptide of PsCAT1 is functional. Overexpression of PsCAT1 enhanced S. cerevisiae resistance to H2O2. Transient expression of PsCAT1 in Nicotiana benthamiana suppressed Bax-induced cell death. Knockdown of PsCAT1 using a host-induced gene silencing (HIGS) system led to the reduced virulence of Pst, which was correlated to H2O2 accumulation in HIGS plants. These results indicate that PsCAT1 acts as an important pathogenicity factor that facilitates Pst infection by scavenging host-derived H2O2.
Collapse
Affiliation(s)
- Pu Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Wenhao Qian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Lihua Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Conghui Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Xiaoxuan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China.
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China.
| |
Collapse
|
3
|
Differential Expression Patterns of Pleurotus ostreatus Catalase Genes during Developmental Stages and under Heat Stress. Genes (Basel) 2017; 8:genes8110335. [PMID: 29160795 PMCID: PMC5704248 DOI: 10.3390/genes8110335] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 01/06/2023] Open
Abstract
Catalases are ubiquitous hydrogen peroxide-detoxifying enzymes. They participate in fungal growth and development, such as mycelial growth and cellular differentiation, and in protecting fungi from oxidative damage under stressful conditions. To investigate the potential functions of catalases in Pleurotus ostreatus, we obtained two catalase genes from a draft genome sequence of P. ostreatus, and cloned and characterized them (Po-cat1 and Po-cat2). Po-cat1 (group II) and Po-cat2 (group III) encoded putative peptides of 745 and 528 amino acids, respectively. Furthermore, the gene structures were variant between Po-cat1 and Po-cat2. Further research revealed that these two catalase genes have divergent expression patterns during different developmental stages. Po-cat1/Po-cat1 was at a barely detectable level in mycelia, accumulated gradually during reproductive growth, and was maximal in separated spores. But no catalase activity of Po-cat1 was detected by native-PAGE during any part of the developmental stages. In contrast, high Po-cat2/Po-cat2 expression and Po-cat2 activity found in mycelia were gradually lost during reproductive growth, and at a minimal level in separated spores. In addition, these two genes responded differentially under 32 °C and 40 °C heat stresses. Po-cat1 was up-regulated under both temperature conditions, while Po-cat2 was up-regulated at 32 °C but down-regulated at 40 °C. The accumulation of catalase proteins correlated with gene expression. These results indicate that the two divergent catalases in P. ostreatus may play different roles during development and under heat stress.
Collapse
|
4
|
Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant. PLoS One 2016; 11:e0165980. [PMID: 27870869 PMCID: PMC5117620 DOI: 10.1371/journal.pone.0165980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies.
Collapse
|
5
|
Wang Y, Dong Q, Ding Z, Gai K, Han X, Kaleri FN, He Q, Wang Y. Regulation of Neurospora Catalase-3 by global heterochromatin formation and its proximal heterochromatin region. Free Radic Biol Med 2016; 99:139-152. [PMID: 27458122 DOI: 10.1016/j.freeradbiomed.2016.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 01/05/2023]
Abstract
Catalase-3 (CAT-3) constitutes the main catalase activity in growing hyphae of Neurospora crassa, and its activity increases during exponential growth or is induced under different stress conditions. Although extensive progress has been made to identify catalase regulators, the regulation mechanism of CAT-3 at the chromatin level still remains unclear. Here, we aim at investigating the molecular regulation mechanisms of cat-3 at the chromatin level. We found that CAT-3 protein levels increased in mutants defective in proper global heterochromatin formation. Bioinformatics analysis identified a 5-kb AT-rich sequence adjacent to the cat-3 promoter as a heterochromatin region because of its enrichment of H3K9me3 and HP1. Expression of CAT-3 was induced by H2O2 treatment in wild-type and such change occurred along with the accumulation of histone H3 acetylation at 5-kb heterochromatin boundaries and cat-3 locus, but without alteration of its H3K9me3 repressive modification. Moreover, disruption of 5-kb heterochromatin region results in elevated cat-3 expression, and higher levels of cat-3 expression were promoted by the combination with global heterochromatin defective mutants. Interestingly, the molecular weight and activity bands of CAT-3 protein are different in heterochromatin defective mutants compared with those in wild-type, suggesting that its N-terminal processing and modification may be altered. Our study indicates that the local chromatin structure creates a heterochromatin repressive environment to repress nearby gene expression.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Dong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaolan Ding
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kexin Gai
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Han
- College of Life Science, Heilongjiang University, Harbin 150080, China
| | - Farah Naz Kaleri
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Kamei M, Yamashita K, Takahashi M, Fukumori F, Ichiishi A, Fujimura M. Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in Neurospora crassa. Biosci Biotechnol Biochem 2016; 80:1843-52. [DOI: 10.1080/09168451.2016.1189321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Among three MAPK disruptants of Neurospora crassa, Δmak-1 was sensitive and Δmak-2 was hypersensitive to micafungin, a beta-1,3-glucan synthase inhibitor, than the wild-type or Δos-2 strains. We identified six micafungin-inducible genes that are involved in cell wall integrity (CWI) and found that MAK-1 regulated the transcription of non-anchored cell wall protein gene, ncw-1, and the beta-1,3-endoglucanase gene, bgt-2, whereas MAK-2 controlled the expression of the glycosylhydrolase-like protein gene, gh76-5, and the C4-dicarboxylate transporter gene, tdt-1. Western blotting analysis revealed that, in the wild-type strain, MAK-1 was constitutively phosphorylated from conidial germination to hyphal development. In contrast, the phosphorylation of MAK-2 was growth phase-dependent, and micafungin induced the phosphorylation of unphosphorylated MAK-2. It should be noted that the phosphorylation of MAK-1 was virtually abolished in the Δmak-2 strain, but was significantly induced by micafungin, suggesting functional cross talk between MAK-1 and MAK-2 signalling pathway in CWI.
Collapse
Affiliation(s)
- Masayuki Kamei
- Faculty of Life Sciences, Toyo University, Oura-gun, Japan
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | | | - Fumiyasu Fukumori
- Faculty of Food and Nutritional Sciences, Toyo University, Oura-gun, Japan
| | | | | |
Collapse
|
7
|
Esquivel-Naranjo EU, García-Esquivel M, Medina-Castellanos E, Correa-Pérez VA, Parra-Arriaga JL, Landeros-Jaime F, Cervantes-Chávez JA, Herrera-Estrella A. A Trichoderma atroviride stress-activated MAPK pathway integrates stress and light signals. Mol Microbiol 2016; 100:860-76. [PMID: 26878111 DOI: 10.1111/mmi.13355] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 11/27/2022]
Abstract
Cells possess stress-activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression.
Collapse
Affiliation(s)
- Edgardo Ulises Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, Irapuato, México.,Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - Mónica García-Esquivel
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, Irapuato, México
| | | | - Víctor Alejandro Correa-Pérez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - Jorge Luis Parra-Arriaga
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - Fidel Landeros-Jaime
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - José Antonio Cervantes-Chávez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | | |
Collapse
|
8
|
Gyöngyösi N, Káldi K. Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa. Antioxid Redox Signal 2014; 20:3007-23. [PMID: 23964982 DOI: 10.1089/ars.2013.5558] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SIGNIFICANCE Both circadian rhythm and the production of reactive oxygen species (ROS) are fundamental features of aerobic eukaryotic cells. The circadian clock enhances the fitness of organisms by enabling them to anticipate cycling changes in the surroundings. ROS generation in the cell is often altered in response to environmental changes, but oscillations in ROS levels may also reflect endogenous metabolic fluctuations governed by the circadian clock. On the other hand, an effective regulation and timing of antioxidant mechanisms may be crucial in the defense of cellular integrity. Thus, an interaction between the circadian timekeeping machinery and ROS homeostasis or signaling in both directions may be of advantage at all phylogenetic levels. RECENT ADVANCES The Frequency-White Collar-1 and White Collar-2 oscillator (FWO) of the filamentous fungus Neurospora crassa is well characterized at the molecular level. Several members of the ROS homeostasis were found to be controlled by the circadian clock, and ROS levels display circadian rhythm in Neurospora. On the other hand, multiple data indicate that ROS affect the molecular oscillator. CRITICAL ISSUES Increasing evidence suggests the interplay between ROS homeostasis and oscillators that may be partially or fully independent of the FWO. In addition, ROS may be part of a complex cellular network synchronizing non-transcriptional oscillators with timekeeping machineries based on the classical transcription-translation feedback mechanism. FUTURE DIRECTIONS Further investigations are needed to clarify how the different layers of the bidirectional interactions between ROS homeostasis and circadian regulation are interconnected.
Collapse
|
9
|
Kamei M, Yamashita K, Takahashi M, Fukumori F, Ichiishi A, Fujimura M. Deletion and expression analysis of beta-(1,3)-glucanosyltransferase genes in Neurospora crassa. Fungal Genet Biol 2012; 52:65-72. [PMID: 23274249 DOI: 10.1016/j.fgb.2012.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
GPI(glycosylphosphatidylinositol)-anchored beta-(1,3)-glucanosyltransferases play an active role in cell wall biosynthesis in fungi. Neurospora crassa has 5 putative beta-(1,3)-glucanosyltransferase genes, namely, gel-1, gel-2, gel-3, gel-4, and gel-5, in its genome. Among them, the gel-3 gene is constitutively expressed at the highest level in growing hyphae, whereas gel-1 is expressed at the lowest level. The gel-3 deletion mutant displayed slow growth, while other gel gene disruptants exhibited normal growth. Although no gel gene disruption affected pH sensitivity and fertility, all Δgel mutants were resistant to cell wall degradation enzymes. Micafungin, a beta-(1,3)-glucan synthase inhibitor, induced gel-4 expression in the wild-type and 2 MAP kinase mutants mak-1 and mak-2 strains. In contrast, fludioxonil, an activator of OS-2 MAP kinase, strongly induced the gel-1 gene in the wild-type strain. Its induction was nearly abolished in the os-2 and in the atf-1/asl-1 mutant. These suggested that GEL-3 is a major factor in mycelial growth, while GEL-1 and GEL-4 may play important roles in cell wall remodeling in response to stress conditions or cell wall damage, respectively.
Collapse
Affiliation(s)
- Masayuki Kamei
- Toyo University, Itakura, Oura-gun, Gunma 374-0193, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Wang ZL, Zhang LB, Ying SH, Feng MG. Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environ Microbiol 2012; 15:409-18. [PMID: 22891860 DOI: 10.1111/j.1462-2920.2012.02848.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The catalase family of Beauveria bassiana (fungal entomopathogen) consists of catA (spore-specific), catB (secreted), catP (peroxisomal), catC (cytoplasmic) and catD (secreted peroxidase/catalase), which were distinguished in phylogeny and structure and functionally characterized by constructing single-gene disrupted and rescued mutants for enzymatic and multi-phenotypic analyses. Total catalase activity decreased 89% and 56% in ΔcatB and ΔcatP, corresponding to the losses of upper and lower active bands gel-profiled for all catalases respectively, but only 9-12% in other knockout mutants. Compared with wild type and complement mutants sharing similar enzymatic and phenotypic parameters, all knockout mutants showed significant (9-56%) decreases in the antioxidant capability of their conidia (active ingredients of mycoinsecticides), followed by remarkable phenotypic defects associated with the fungal biocontrol potential. These defects included mainly the losses of 40% thermotolerance (45°C) in ΔcatA, 46-48% UV-B resistance in ΔcatA and ΔcatD, and 33-47% virulence to Spodoptera litura larvae in ΔcatA, ΔcatP and ΔcatD respectively. Moreover, the drastic transcript upregulation of some other catalase genes observed in the normal culture of each knockout mutant revealed functionally complimentary effects among some of the catalase genes, particularly between catB and catC whose knockout mutants displayed little or minor phenotypic changes. However, the five catalase genes functioned redundantly in mediating the fungal tolerance to either hyperosmotic or fungicidal stress. The differentiated roles of five catalases in regulating the B. bassiana virulence and tolerances to oxidative stress, high temperature and UV-B irradiation provide new insights into fungal adaptation to stressful environment and host invasion.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | | | | | | |
Collapse
|
11
|
The Neurospora crassa OS MAPK pathway-activated transcription factor ASL-1 contributes to circadian rhythms in pathway responsive clock-controlled genes. Fungal Genet Biol 2012; 49:180-8. [PMID: 22240319 DOI: 10.1016/j.fgb.2011.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/21/2022]
Abstract
The OS-pathway mitogen-activated protein kinase (MAPK) cascade of Neurospora crassa is responsible for adaptation to osmotic stress. Activation of the MAPK, OS-2, leads to the transcriptional induction of many genes involved in the osmotic stress response. We previously demonstrated that there is a circadian rhythm in the phosphorylation of OS-2 under constant non-stress inducing conditions. Additionally, several osmotic stress-induced genes are known to be regulated by the circadian clock. Therefore, we investigated if rhythms in activation of OS-2 lead to circadian rhythms in other known stress responsive targets. Here we identify three more osmotic stress induced genes as rhythmic: cat-1, gcy-1, and gcy-3. These genes encode a catalase and two predicted glycerol dehydrogenases thought to be involved in the production of glycerol. Rhythms in these genes depend upon the oscillator component FRQ. To investigate how the circadian signal is propagated to these stress induced genes, we examined the role of the OS-responsive transcription factor, ASL-1, in mediating circadian gene expression. We find that while the asl-1 transcript is induced by several stresses including an osmotic shock, asl-1 mRNA accumulation is not rhythmic. However, we show that ASL-1 is required for generating normal circadian rhythms of some OS-pathway responsive transcripts (bli-3, ccg-1, cat-1, gcy-1 and gcy-3) in the absence of an osmotic stress. These data are consistent with the possibility that post-transcriptional regulation of ASL-1 by the rhythmically activated OS-2 MAPK could play a role in generating rhythms in downstream targets.
Collapse
|
12
|
Yoshida Y, Iigusa H, Wang N, Hasunuma K. Cross-talk between the cellular redox state and the circadian system in Neurospora. PLoS One 2011; 6:e28227. [PMID: 22164247 PMCID: PMC3229512 DOI: 10.1371/journal.pone.0028227] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/03/2011] [Indexed: 01/03/2023] Open
Abstract
The circadian system is composed of a number of feedback loops, and multiple feedback loops in the form of oscillators help to maintain stable rhythms. The filamentous fungus Neurospora crassa exhibits a circadian rhythm during asexual spore formation (conidiation banding) and has a major feedback loop that includes the FREQUENCY (FRQ)/WHITE COLLAR (WC) -1 and -2 oscillator (FWO). A mutation in superoxide dismutase (sod)-1, an antioxidant gene, causes a robust and stable circadian rhythm compared with that of wild-type (Wt). However, the mechanisms underlying the functions of reactive oxygen species (ROS) remain unknown. Here, we show that cellular ROS concentrations change in a circadian manner (ROS oscillation), and the amplitudes of ROS oscillation increase with each cycle and then become steady (ROS homeostasis). The ROS oscillation and homeostasis are produced by the ROS-destroying catalases (CATs) and ROS-generating NADPH oxidase (NOX). cat-1 is also induced by illumination, and it reduces ROS levels. Although ROS oscillation persists in the absence of frq, wc-1 or wc-2, its homeostasis is altered. Furthermore, genetic and biochemical evidence reveals that ROS concentration regulates the transcriptional function of WCC and a higher ROS concentration enhances conidiation banding. These findings suggest that the circadian system engages in cross-talk with the cellular redox state via ROS-regulatory factors.
Collapse
Affiliation(s)
- Yusuke Yoshida
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Totsuka-ku, Yokohama, Japan.
| | | | | | | |
Collapse
|
13
|
Global analysis of serine-threonine protein kinase genes in Neurospora crassa. EUKARYOTIC CELL 2011; 10:1553-64. [PMID: 21965514 DOI: 10.1128/ec.05140-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Serine/threonine (S/T) protein kinases are crucial components of diverse signaling pathways in eukaryotes, including the model filamentous fungus Neurospora crassa. In order to assess the importance of S/T kinases to Neurospora biology, we embarked on a global analysis of 86 S/T kinase genes in Neurospora. We were able to isolate viable mutants for 77 of the 86 kinase genes. Of these, 57% exhibited at least one growth or developmental phenotype, with a relatively large fraction (40%) possessing a defect in more than one trait. S/T kinase knockouts were subjected to chemical screening using a panel of eight chemical treatments, with 25 mutants exhibiting sensitivity or resistance to at least one chemical. This brought the total percentage of S/T mutants with phenotypes in our study to 71%. Mutants lacking apg-1, an S/T kinase required for autophagy in other organisms, possessed the greatest number of phenotypes, with defects in asexual and sexual growth and development and in altered sensitivity to five chemical treatments. We showed that NCU02245/stk-19 is required for chemotropic interactions between female and male cells during mating. Finally, we demonstrated allelism between the S/T kinase gene NCU00406 and velvet (vel), encoding a p21-activated protein kinase (PAK) gene important for asexual and sexual growth and development in Neurospora.
Collapse
|
14
|
Yan L, Yang Q, Jiang J, Michailides TJ, Ma Z. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Appl Microbiol Biotechnol 2010; 90:215-26. [PMID: 21161211 DOI: 10.1007/s00253-010-3027-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/15/2010] [Accepted: 11/23/2010] [Indexed: 12/19/2022]
Abstract
The response regulator protein is a core element of two-component signaling pathway. In this study, we investigated functions of BRRG-1 of Botrytis cinerea, a gene that encodes a putative response regulator protein, which is homologous to Rrg-1 in Neurospora crassa. The BRRG-1 gene deletion mutant ΔBrrg1-62 was unable to produce conidia. The mutant showed increased sensitivity to osmotic stress mediated by NaCl and KCl, and to oxidative stress generated by H(2)O(2). Additionally, the mutant was more sensitive to the fungicides iprodione, fludioxonil, and triadimefon than the parental strain. Western-blot analysis showed that the Bos-2 protein, the putative downstream component of Brrg-1, was not phosphorylated in the ΔBrrg1-62. Real-time polymerase chain reaction assays showed that expression of BOS-2 also decreased significantly in the mutant. All of the defects were restored by genetic complementation of the ΔBrrg1-62 with the wild-type BRRG-1 gene. Plant inoculation tests showed that the mutant did not show changes in pathogenicity on rapeseed leaves. These results indicated that Brrg-1 is involved in the regulation of asexual development, sensitivity to iprodione, fludioxonil, and triadimefon fungicides, and adaptation to osmotic and oxidative stresses in B. cinerea.
Collapse
Affiliation(s)
- Leiyan Yan
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 268 Kaixuan Road, Hangzhou, 310029, China
| | | | | | | | | |
Collapse
|
15
|
Yan L, Yang Q, Sundin GW, Li H, Ma Z. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genet Biol 2010; 47:753-60. [PMID: 20595070 DOI: 10.1016/j.fgb.2010.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 11/24/2022]
Abstract
We present a characterization of bos5 from Botrytis cinerea, a gene that encodes a mitogen-activated protein kinase kinase (MAPKK), which is homologous to OS-5 of Neurospora crassa. The bos5 gene deletion mutant exhibited reduced vegetative growth and strongly impaired conidiation. The mutant also exhibited increased sensitivity to the dicarboximide fungicide iprodione and to osmotic stress mediated by NaCl or KCl. Western-blot analysis showed that the BcSAK1 protein, the putative downstream component of BOS5, was not phosphorylated in the mutant. Plant inoculation tests showed that the mutants were unable to infect cucumber leaves. All of these defects were restored by genetic complementation of the Deltabcos5-21 mutant with the wild-type bos5 gene. These results indicated that BOS5 is involved in the regulation of vegetative differentiation, virulence, adaptation to iprodione and ionic stress in B. cinerea.
Collapse
Affiliation(s)
- Leiyan Yan
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
16
|
Catalase overexpression reduces the germination time and increases the pathogenicity of the fungus Metarhizium anisopliae. Appl Microbiol Biotechnol 2010; 87:1033-44. [DOI: 10.1007/s00253-010-2517-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
|
17
|
Hoff B, Kamerewerd J, Sigl C, Zadra I, Kück U. Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 2009; 85:1081-94. [DOI: 10.1007/s00253-009-2168-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 11/29/2022]
|
18
|
ATF-1 transcription factor regulates the expression of ccg-1 and cat-1 genes in response to fludioxonil under OS-2 MAP kinase in Neurospora crassa. Fungal Genet Biol 2008; 45:1562-9. [DOI: 10.1016/j.fgb.2008.09.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 09/12/2008] [Accepted: 09/24/2008] [Indexed: 11/16/2022]
|
19
|
Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura M. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochem Biophys Res Commun 2007; 363:639-44. [PMID: 17897620 DOI: 10.1016/j.bbrc.2007.09.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 11/25/2022]
Abstract
Fusarium graminearum produces trichothecenes in aerial hyphae, a process which is markedly suppressed by NaCl without a significant effect on fungal growth. Here we report on the involvement of kinases of the two-component osmotic signal transduction pathway in the regulation of secondary metabolism in F. graminearum. While a deletion null mutant of FgOs1 (encoding the osmosensor histidine kinase) (deltaFgOs1) produced a reduced amount of the red pigment aurofusarin and was unaltered in its ability to produce trichothecenes, deletion null mutants of FgOs4 (encoding mitogen-activated protein kinase kinase kinase; MAPKKK), FgOs5 (MAPKK), and FgOs2 (MAPK) showed markedly enhanced pigmentation and failed to produce trichothecenes in aerial hyphae. Also, the transcript levels of PKS12 and GIP2 (aurofusarin biosynthetic pathway and regulatory genes, respectively) were significantly enhanced in the deltaFgOs4, deltaFgOs5, and deltaFgOs2 mutants and were reduced in the deltaFgOs1 mutant. In addition, expression of Tri4 and Tri6 (trichothecene biosynthetic pathway and regulatory genes) and production of trichothecenes in rice medium were markedly reduced in the former three protein kinase mutants. This is the first report demonstrating the involvement of a MAPK in the regulation of secondary metabolism.
Collapse
Affiliation(s)
- Noriyuki Ochiai
- Plant & Microbial Metabolic Engineering Research Unit, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|