1
|
Hul LM, Ibelli AMG, Savoldi IR, Marcelino DEP, Fernandes LT, Peixoto JO, Cantão ME, Higa RH, Giachetto PF, Coutinho LL, Ledur MC. Differentially expressed genes in the femur cartilage transcriptome clarify the understanding of femoral head separation in chickens. Sci Rep 2021; 11:17965. [PMID: 34504189 PMCID: PMC8429632 DOI: 10.1038/s41598-021-97306-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Locomotor problems are among one of the main concerns in the current poultry industry, causing major economic losses and affecting animal welfare. The most common bone anomalies in the femur are dyschondroplasia, femoral head separation (FHS), and bacterial chondronecrosis with osteomyelitis (BCO), also known as femoral head necrosis (FHN). The present study aimed to identify differentially expressed (DE) genes in the articular cartilage (AC) of normal and FHS-affected broilers by RNA-Seq analysis. In the transcriptome analysis, 12,169 genes were expressed in the femur AC. Of those, 107 genes were DE (FDR < 0.05) between normal and affected chickens, of which 9 were downregulated and 98 were upregulated in the affected broilers. In the gene-set enrichment analysis using the DE genes, 79 biological processes (BP) were identified and were grouped into 12 superclusters. The main BP found were involved in the response to biotic stimulus, gas transport, cellular activation, carbohydrate-derived catabolism, multi-organism regulation, immune system, muscle contraction, multi-organism process, cytolysis, leukocytes and cell adhesion. In this study, the first transcriptome analysis of the broilers femur articular cartilage was performed, and a set of candidate genes (AvBD1, AvBD2, ANK1, EPX, ADA, RHAG) that could trigger changes in the broiler´s femoral growth plate was identified. Moreover, these results could be helpful to better understand FHN in chickens and possibly in humans.
Collapse
Affiliation(s)
- Ludmila Mudri Hul
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil
| | - Adriana Mércia Guaratini Ibelli
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | - Igor Ricardo Savoldi
- grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| | | | | | - Jane Oliveira Peixoto
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | | | - Roberto Hiroshi Higa
- grid.460200.00000 0004 0541 873XEmbrapa Informática Agropecuária, Campinas, SP 70770-901 Brazil
| | | | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Departamento de Zootecnia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil ,grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| |
Collapse
|
2
|
Sakurayama S, Nojima D, Yoshizawa M, Takeuchi T, Ito M, Kitano T. Genetic diversity of two populations of the tufted puffin Fratercula cirrhata (Pallas, 1769). Genes Genet Syst 2021; 96:119-128. [PMID: 34135205 DOI: 10.1266/ggs.20-00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The tufted puffin Fratercula cirrhata (Charadriiformes: Alcidae) is distributed throughout the boreal and low Arctic areas of the North Pacific, from California, USA to Hokkaido, Japan. Few studies have investigated the genetic diversity of this species. Therefore, we analyzed the genetic diversity of two captive populations using nucleotide sequences of two mitochondrial loci (COX1 and D-loop) and one nuclear locus (RHBG). We sequenced these loci for birds from Tokyo Sea Life Park (Kasai Rinkai Suizokuen), originally from Alaska, and birds from Aqua World Oarai, originally from far eastern Russia. We found five COX1 haplotypes and 17 D-loop haplotypes for the mitochondrial loci, and obtained 14 predicted haplotypes for the nuclear RHBG locus. The major haplotypes of all three loci occurred in individuals from both populations. Thus, there were no clear genetic differences between the populations with respect to these three loci. Although the breeding range of the tufted puffin covers the boreal and low Arctic from California to Hokkaido, our results suggest that the species has not genetically diverged within its breeding range.
Collapse
Affiliation(s)
| | | | | | | | | | - Takashi Kitano
- Graduate School of Science and Engineering, Ibaraki University
| |
Collapse
|
3
|
Suzuki A, Komata H, Iwashita S, Seto S, Ikeya H, Tabata M, Kitano T. Evolution of the RH gene family in vertebrates revealed by brown hagfish (Eptatretus atami) genome sequences. Mol Phylogenet Evol 2016; 107:1-9. [PMID: 27746317 DOI: 10.1016/j.ympev.2016.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/04/2016] [Accepted: 10/08/2016] [Indexed: 01/02/2023]
Abstract
In vertebrates, there are four major genes in the RH (Rhesus) gene family, RH, RHAG, RHBG, and RHCG. These genes are thought to have been formed by the two rounds of whole-genome duplication (2R-WGD) in the common ancestor of all vertebrates. In our previous work, where we analyzed details of the gene duplications process of this gene family, three nucleotide sequences belonging to this family were identified in Far Eastern brook lamprey (Lethenteron reissneri), and the phylogenetic positions of the genes were determined. Lampreys, along with hagfishes, are cyclostomata (jawless fishes), which is a sister group of gnathostomata (jawed vertebrates). Although those results suggested that one gene was orthologous to the gnathostome RHCG genes, we did not identify clear orthologues for other genes. In this study, therefore, we identified three novel cDNA sequences that belong to the RH gene family using de novo transcriptome analysis of another cyclostome: the brown hagfish (Eptatretus atami). We also determined the nucleotide sequences for the RHBG and RHCG genes in a red stingray (Dasyatis akajei), which belongs to the cartilaginous fishes. The phylogenetic tree showed that two brown hagfish genes, which were probably duplicated in the cyclostome lineage, formed a cluster with the gnathostome RHAG genes, whereas another brown hagfish gene formed a cluster with the gnathostome RHCG genes. We estimated that the RH genes had a higher evolutionary rate than the RHAG, RHBG, and RHCG genes. Interestingly, in the RHBG genes, only the bird lineage showed a higher rate of nonsynonymous substitutions. It is likely that this higher rate was caused by a state of relaxed functional constraints rather than positive selection nor by pseudogenization.
Collapse
Affiliation(s)
- Akinori Suzuki
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi 316-8511, Japan
| | - Hidero Komata
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi 316-8511, Japan
| | - Shogo Iwashita
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi 316-8511, Japan
| | - Shotaro Seto
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi 316-8511, Japan
| | - Hironobu Ikeya
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi 316-8511, Japan
| | - Mitsutoshi Tabata
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi 316-8511, Japan
| | - Takashi Kitano
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi 316-8511, Japan.
| |
Collapse
|
4
|
Suzuki A, Endo K, Kitano T. Phylogenetic positions of RH blood group-related genes in cyclostomes. Gene 2014; 543:22-7. [DOI: 10.1016/j.gene.2014.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/24/2014] [Accepted: 04/06/2014] [Indexed: 11/26/2022]
|
5
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|