1
|
Zhao J, Ge Y, Liu K, Yamaoka Y, Zhang D, Chi Z, Akkaya M, Kong F. Overexpression of a MYB1 Transcription Factor Enhances Triacylglycerol and Starch Accumulation and Biomass Production in the Green Microalga Chlamydomonas reinhardtii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17833-17841. [PMID: 37934701 DOI: 10.1021/acs.jafc.3c05290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Microalgae are promising platforms for biofuel production. Transcription factors (TFs) are emerging as key regulators of lipid metabolism for biofuel production in microalgae. We previously identified a novel TF MYB1, which mediates lipid accumulation in the green microalga Chlamydomonas under nitrogen depletion. However, the function of MYB1 on lipid metabolism in microalgae under standard growth conditions remains poorly understood. Here, we examined the effects of MYB1 overexpression (MYB1-OE) on lipid metabolism and physiological changes in Chlamydomonas. Under standard growth conditions, MYB1-OE transformants accumulated 1.9 to 3.2-fold more triacylglycerols (TAGs) than that in the parental line (PL), and total fatty acids (FAs) also significantly increased. Moreover, saturated FA (C16:0) was enriched in TAGs and total FAs in MYB1-OE transformants. Notably, starch and protein content and biomass production also significantly increased in MYB1-OE transformants compared with that in PL. Furthermore, RT-qPCR results showed that the expressions of key genes involved in TAG, FA, and starch biosynthesis were upregulated. In addition, MYB1-OE transformants showed higher biomass production without a compromised cell growth rate and photosynthetic activity. Overall, our results indicate that MYB1 overexpression not only enhanced lipid content but also improved starch and protein content and biomass production under standard growth conditions. TF MYB1 engineering is a promising genetic engineering tool for biofuel production in microalgae.
Collapse
Affiliation(s)
- Jilong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yunlong Ge
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Keqing Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea
| | - Di Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Mahinur Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Wang L, Liu L, Zhao J, Li C, Wu H, Zhao H, Wu Q. Granule-bound starch synthase in plants: Towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111843. [PMID: 37648115 DOI: 10.1016/j.plantsci.2023.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China.
| |
Collapse
|
3
|
Lancíková V, Hricová A. Digital Absolute Gene Expression Analysis of Essential Starch-Related Genes in a Radiation Developed Amaranthus cruentus L. Variety in Comparison with Real-Time PCR. PLANTS 2020; 9:plants9080966. [PMID: 32751665 PMCID: PMC7464018 DOI: 10.3390/plants9080966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
We investigated the expression pattern of four major starch genes at different seed developmental stages in the radiation-bred amaranth variety “Pribina” (Amaranthus cruentus L.) and corresponding control genotype “Ficha” (Amaranthus cruentus L.). Two platforms were used and compared for the gene expression analysis of GBSSI, SSSI, SBE, and DBE amaranth genes, including a standard quantitative real-time PCR (qPCR) technique and relatively novel droplet digital PCR (ddPCR) assay. In our conditions, both methods showed great accuracy and revealed higher expression of the investigated genes in the mutant variety than in the control genotype. Here we report for the first time, a ddPCR gene expression assay for the cultivated grain amaranth, as the most important group of the species in the genus Amaranthus.
Collapse
|
4
|
Bojórquez-Velázquez E, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Protein analysis reveals differential accumulation of late embryogenesis abundant and storage proteins in seeds of wild and cultivated amaranth species. BMC PLANT BIOLOGY 2019; 19:59. [PMID: 30727945 PMCID: PMC6366027 DOI: 10.1186/s12870-019-1656-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Amaranth is a plant naturally resistant to various types of stresses that produces seeds of excellent nutritional quality, so amaranth is a promising system for food production. Amaranth wild relatives have survived climate changes and grow under harsh conditions, however no studies about morphological and molecular characteristics of their seeds are known. Therefore, we carried out a detailed morphological and molecular characterization of wild species A. powellii and A. hybridus, and compared them with the cultivated amaranth species A. hypochondriacus (waxy and non-waxy seeds) and A. cruentus. RESULTS Seed proteins were fractionated according to their polarity properties and were analysed in one-dimensional gel electrophoresis (1-DE) followed by nano-liquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS). A total of 34 differentially accumulated protein bands were detected and 105 proteins were successfully identified. Late embryogenesis abundant proteins were detected as species-specific. Oleosins and oil bodies associated proteins were observed preferentially in A. cruentus. Different isoforms of the granule-bound starch synthase I, and several paralogs of 7S and 11S globulins were also identified. The in silico structural analysis from different isoforms of 11S globulins was carried out, including new types of 11S globulin not reported so far. CONCLUSIONS The results provide novel information about 11S globulins and proteins related in seed protection, which could play important roles in the nutritional value and adaptive tolerance to stress in amaranth species.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica, A.C, 78216 San Luis Potosí, Mexico
| | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica, A.C, 78216 San Luis Potosí, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, 56250 Texcoco, Estado de México Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, 36821 Guanajuato, Mexico
| | | |
Collapse
|
5
|
Koo KM, Jung S, Lee BS, Kim JB, Jo YD, Choi HI, Kang SY, Chung GH, Jeong WJ, Ahn JW. The Mechanism of Starch Over-Accumulation in Chlamydomonas reinhardtii High-Starch Mutants Identified by Comparative Transcriptome Analysis. Front Microbiol 2017; 8:858. [PMID: 28588557 PMCID: PMC5440458 DOI: 10.3389/fmicb.2017.00858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
The focus of this study was the mechanism of starch accumulation in Chlamydomonas reinhardtii high-starch mutants. Three C. reinhardtii mutants showing high-starch content were generated using gamma irradiation. When grown under nitrogen-deficient conditions, these mutants had more than twice as much starch than a wild-type control. The mechanism of starch over-accumulation in these mutants was studied with comparative transcriptome analysis. In all mutants, induction of phosphoglucomutase 1 (PGM1) expression was detected; PGM1 catalyzes the inter-conversion of glucose 1-phosphate and glucose 6-phosphate in both starch biosynthetic and glycolytic pathway. Interestingly, transcript levels of phosphoglucose isomerase 1 (PGI1), fructose 1,6-bisphosphate aldolase 1 and 2 (FBA1 and FBA2) were down-regulated in all mutants; PGI1, FBA1, and FBA2 act on downstream of glucose 6-phosphate conversion in glycolytic pathway. Therefore, down-regulations of PGI1, FBA1, and FBA2 may lead to accumulation of upstream metabolites, notably glucose 6-phosphate, resulting in induction of PGM1 expression through feed-forward regulation and that PGM1 overexpression caused starch over-accumulation in mutants. These results suggest that PGI1, FBA1, FBA2, and PGM1 correlate with each other in terms of coordinated transcriptional regulation and play central roles for starch over-accumulation in C. reinhardtii.
Collapse
Affiliation(s)
- Kwang M. Koo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
- Department of Biological Sciences, Chonbuk National UniversityJeonju, South Korea
| | - Sera Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Beom S. Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Yeong D. Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Si-Yong Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Gook-H. Chung
- Department of Biological Sciences, Chonbuk National UniversityJeonju, South Korea
| | - Won-Joong Jeong
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| |
Collapse
|
6
|
Xia X, Li G, Liao F, Zhang F, Zheng J, Kan J. Granular Structure and Physicochemical Properties of Starches from Amaranth Grain. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2013.860168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Park YJ, Nishikawa T, Matsushima K, Minami M, Nemoto K. A rapid and reliable PCR-restriction fragment length polymorphism (RFLP) marker for the identification of Amaranthus cruentus species. BREEDING SCIENCE 2014; 64:422-6. [PMID: 25914599 PMCID: PMC4267319 DOI: 10.1270/jsbbs.64.422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/08/2014] [Indexed: 05/08/2023]
Abstract
A rapid and reliable PCR-restriction fragment length polymorphism (RFLP) marker was developed to identify the Amaranthus cruentus species by comparing sequences of the starch branching enzyme (SBE) locus among the three cultivated grain amaranths. We determined the partial SBE genomic sequence in 72 accessions collected from diverse locations around the world by direct sequence analysis. Then, we aligned the gene sequences and searched for restriction enzyme cleavage sites specific to each species for use in the PCR-RFLP analysis. The result indicated that MseI would recognize the sequence 5'-T/TAA-3' in intron 11 from A. cruentus SBE. A restriction analysis of the amplified 278-bp portion of the SBE gene using the MseI restriction enzyme resulted in species-specific RFLP patterns among A. cruentus, Amaranthus caudatus and Amaranthus hypochondriacus. Two different bands, 174-bp and 104-bp, were generated in A. cruentus, while A. caudatus and A. hypochondriacus remained undigested (278-bp). Thus, we propose that the PCR-RFLP analysis of the amaranth SBE gene provides a sensitive, rapid, simple and useful technique for identifying the A. cruentus species among the cultivated grain amaranths.
Collapse
Affiliation(s)
- Young-Jun Park
- Graduate School of Agriculture, Shinshu University,
8304 Minamiminowa, Nagano 399-4598,
Japan
| | - Tomotaro Nishikawa
- Genetic Resources Center, National Insitute of Agrobiological Sciences,
2-1-2 Tsukuba, Ibaraki 305-8602,
Japan
| | - Kenichi Matsushima
- Graduate School of Agriculture, Shinshu University,
8304 Minamiminowa, Nagano 399-4598,
Japan
| | - Mineo Minami
- Graduate School of Agriculture, Shinshu University,
8304 Minamiminowa, Nagano 399-4598,
Japan
| | - Kazuhiro Nemoto
- Graduate School of Agriculture, Shinshu University,
8304 Minamiminowa, Nagano 399-4598,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
8
|
Park YJ, Nishikawa T, Tomooka N, Nemoto K. Molecular characterization of an isoamylase 1-type starch debranching enzyme (DBEI) in grain amaranth (Amaranthus cruentus L.). Mol Biol Rep 2014; 41:7857-64. [PMID: 25167854 DOI: 10.1007/s11033-014-3679-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to characterize the molecular profile of a starch debranching enzyme (DBE) in grain amaranth. A cDNA clone that encodes a putative DBE was isolated from amaranth perisperm and then sequenced. This amaranth DBE appears to be an ISA1-type DBE (DBEI), based on its substrate specificity and the sequence similarity between the 2,391-bp cDNA clone and ISA1 s from potato and Arabidopsis. The mature DBEI of amaranth consists of 796 amino acids (90.5 kDa). We analyzed the transcript levels of the DBEI gene in amaranth seeds during various developmental stages and in plant tissues by qRT-PCR and RT-PCR analyses. The transcript levels of the DBEI gene rapidly increased at the middle stage of seed maturation. This result indicates that the enzyme encoded by the amaranth DBEI gene plays an important role in starch accumulation throughout the seed during the middle stage of seed development. We detected DBEI transcripts in storage and non-storage tissues. At the six-leaf stage, there were high levels of the DBEI transcripts in leaves, petioles, and the stem, and low levels in the root. Therefore, we suggest that the DBEI expression is not specific to non-storage and/or storage tissues. This summary of the basic characteristics of the DBEI gene will contribute to further studies on starch biosynthesis in Amaranthus.
Collapse
Affiliation(s)
- Young-Jun Park
- Graduate School of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano, 399-4598, Japan,
| | | | | | | |
Collapse
|