1
|
Tsukada T, Azuma M, Horiguchi K, Fujiwara K, Kouki T, Kikuchi M, Yashiro T. Folliculostellate cell interacts with pericyte via TGFβ2 in rat anterior pituitary. J Endocrinol 2016; 229:159-70. [PMID: 26957638 DOI: 10.1530/joe-16-0033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022]
Abstract
The anterior pituitary gland comprises five types of endocrine cells plus non-endocrine cells including folliculostellate cells, endothelial cells, and capillary mural cells (pericytes). In addition to being controlled by the hypothalamic-pituitary-target organ axis, the functions of these cells are likely regulated by local cell and extracellular matrix (ECM) interactions. However, these complex interactions are not fully understood. We investigated folliculostellate cell-mediated cell-to-cell interaction. Using S100β-GFP transgenic rats, which express GFP in folliculostellate cells, we designed a three-dimensional cell culture to examine the effects of folliculostellate cells. Interestingly, removal of folliculostellate cells reduced collagen synthesis (Col1a1 and Col3a1). Because pericytes are important collagen-producing cells in the gland, we stained for desmin (a pericyte marker). Removal of folliculostellate cells resulted in fewer desmin-positive pericytes and less desmin mRNA. We then attempted to identify the factor mediating folliculostellate cell-pericyte interaction. RT-PCR and in situ hybridization revealed that the important profibrotic factor transforming growth factor beta-2 (TGFβ2) was specifically expressed in folliculostellate cells and that TGFβ receptor II was expressed in pericytes, endothelial cells, and parenchymal cells. Immunocytochemistry showed that TGFβ2 induced SMAD2 nuclear translocation in pericytes. TGFβ2 increased collagen synthesis in a dose-dependent manner. This action was completely blocked by TGFβ receptor I inhibitor (SB431542). Diminished collagen synthesis in folliculostellate cell-deficient cell aggregates was partially recovered by TGFβ2. TGFβ2-mediated folliculostellate cell-pericyte interaction appears to be essential for collagen synthesis in rat anterior pituitary. This finding sheds new light on local cell-ECM interactions in the gland.
Collapse
Affiliation(s)
- Takehiro Tsukada
- Division of Histology and Cell BiologyDepartment of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Morio Azuma
- Division of Histology and Cell BiologyDepartment of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell BiologyDepartment of Health Sciences, Kyorin University, Tokyo, Japan
| | - Ken Fujiwara
- Division of Histology and Cell BiologyDepartment of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Tom Kouki
- Division of Histology and Cell BiologyDepartment of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Motoshi Kikuchi
- Laboratory of Natural HistoryJichi Medical University School of Medicine, Tochigi, Japan
| | - Takashi Yashiro
- Division of Histology and Cell BiologyDepartment of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
2
|
Azuma M, Tofrizal A, Maliza R, Batchuluun K, Ramadhani D, Syaidah R, Tsukada T, Fujiwara K, Kikuchi M, Horiguchi K, Yashiro T. Maintenance of the Extracellular Matrix in Rat Anterior Pituitary Gland: Identification of Cells Expressing Tissue Inhibitors of Metalloproteinases. Acta Histochem Cytochem 2015; 48:185-92. [PMID: 26855451 PMCID: PMC4726572 DOI: 10.1267/ahc.15020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/13/2015] [Indexed: 01/16/2023] Open
Abstract
The extracellular matrix (ECM) is important in creating cellular environments in tissues. Recent studies have demonstrated that ECM components are localized in anterior pituitary cells and affect cell activity. Thus, clarifying the mechanism responsible for ECM maintenance would improve understanding of gland function. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases and participate in ECM degradation. In this study, we investigated whether cells expressing TIMPs are present in rat anterior pituitary gland. Reverse transcription polymerase chain reaction was used to analyze expression of the TIMP family (TIMP1-4), and cells producing TIMPs in the gland were identified by using in situ hybridization. Expression of TIMP1, TIMP2, and TIMP3 mRNAs was detected, and the TIMP-expressing cells were located in the gland. The TIMP-expressing cells were also investigated by means of double-staining with in situ hybridization and immunohistochemical techniques. Double-staining revealed that TIMP1 mRNA was expressed in folliculostellate cells. TIMP2 mRNA was detected in folliculostellate cells, prolactin cells, and thyroid-stimulating hormone cells. TIMP3 mRNA was identified in endothelial cells, pericytes, novel desmin-immunopositive perivascular cells, and folliculostellate cells. These findings indicate that TIMP1-, TIMP2-, and TIMP3-expressing cells are present in rat anterior pituitary gland and that they are involved in maintaining ECM components.
Collapse
Affiliation(s)
- Morio Azuma
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Alimuddin Tofrizal
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Rita Maliza
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Khongorzul Batchuluun
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Dini Ramadhani
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Rahimi Syaidah
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Takehiro Tsukada
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Motoshi Kikuchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Laboratory of Natural History, Jichi Medical University School of Medicine
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| |
Collapse
|
3
|
Expression of the cell-surface heparan sulfate proteoglycan syndecan-2 in developing rat anterior pituitary gland. Cell Tissue Res 2013; 353:473-81. [DOI: 10.1007/s00441-013-1641-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/17/2013] [Indexed: 01/22/2023]
|
4
|
Expression of small leucine-rich proteoglycans in rat anterior pituitary gland. Cell Tissue Res 2012; 351:207-12. [PMID: 23100035 DOI: 10.1007/s00441-012-1513-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Proteoglycans are components of the extracellular matrix and comprise a specific core protein substituted with covalently linked glycosaminoglycan chains. Small leucine-rich proteoglycans (SLRPs) are a major family of proteoglycans and have key roles as potent effectors in cellular signaling pathways. Research during the last two decades has shown that SLRPs regulate biological functions in many tissues such as skin, tendon, kidney, liver, and heart. However, little is known of the expression of SLRPs, or the characteristics of the cells that produce them, in the anterior pituitary gland. Therefore, we have determined whether SLRPs are present in rat anterior pituitary gland. We have used real-time reverse transcription with the polymerase chain reaction to analyze the expression of SLRP genes and have identified the cells that produce SLRPs by using in situ hybridization with a digoxigenin-labeled cRNA probe. We have clearly detected the mRNA expression of SLRP genes, and cells expressing decorin, biglycan, fibromodulin, lumican, proline/arginine-rich end leucine-rich repeat protein (PRELP), and osteoglycin are located in the anterior pituitary gland. We have also investigated the possible double-staining of SLRP mRNA and pituitary hormones, S100 protein (a marker of folliculostellate cells), desmin (a marker of capillary pericytes), and isolectin B4 (a marker of endothelial cells). Decorin, biglycan, fibromodulin, lumican, PRELP, and osteoglycin mRNA have been identified in S100-protein-positive and desmin-positive cells. Thus, we conclude that folliculostellate cells and pericytes produce SLRPs in rat anterior pituitary gland.
Collapse
|
5
|
Horiguchi K, Kouki T, Fujiwara K, Tsukada T, Ly F, Kikuchi M, Yashiro T. Expression of the proteoglycan syndecan-4 and the mechanism by which it mediates stress fiber formation in folliculostellate cells in the rat anterior pituitary gland. J Endocrinol 2012; 214:199-206. [PMID: 22645300 DOI: 10.1530/joe-12-0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Folliculostellate (FS) cells in the anterior pituitary gland appear to have multifunctional properties. FS cells connect to each other at gap junctions and thereby form a histological and functional network. We have performed a series of studies on network formation in FS cells and recently reported that FS cells markedly prolong their cytoplasmic processes and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In this study, we investigated the mechanism of this extension of FS cell cytoplasmic processes under the influence of laminin and found that laminin promoted stress fiber formation within FS cells. Next, we noted that formation of stress fibers in FS cells was mediated by syndecan-4, a transmembrane proteoglycan that binds ECM and soluble factors via their extracellular glycosaminoglycan chain. We then observed that expressions of syndecan-4 and α-actinin (a microfilament bundling protein that cross-links actin stress fibers in FS cells) were upregulated by laminin. Using specific siRNA of syndecan-4, actin polymerization of FS cells was inhibited. Our findings suggest that FS cells received a signal from laminin-syndecan-4 interaction, which resulted in morphological changes, and that the formation of a morphological and functional network in FS cells was transduced by a syndecan-4-dependent mechanism in the presence of ECM.
Collapse
Affiliation(s)
- Kotaro Horiguchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Fujiwara K, Jindatip D, Kikuchi M, Yashiro T. In situ hybridization reveals that type I and III collagens are produced by pericytes in the anterior pituitary gland of rats. Cell Tissue Res 2010; 342:491-5. [PMID: 21086137 DOI: 10.1007/s00441-010-1078-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 10/08/2010] [Indexed: 11/28/2022]
Abstract
Type I and III collagens widely occur in the rat anterior pituitary gland and are the main components of the extracellular matrix (ECM). Although ECM components possibly play an important role in the function of the anterior pituitary gland, little is known about collagen-producing cells. Type I collagen is a heterotrimer of two α1(I) chains (the product of the col1a1 gene) and one α2(I) chain (the product of the col1a2 gene). Type III collagen is a homotrimer of α1(III) chains (the product of the col3a1 gene). We used in situ hybridization with digoxigenin-labeled cRNA probes to examine the expression of col1a1, col1a2, and col3a1 mRNAs in the pituitary gland of adult rats. mRNA expression for these collagen genes was clearly observed, and cells expressing col1a1, col1a2, and col3a1 mRNA were located around capillaries in the gland. We also investigated the possible double-staining of collagen mRNA and pituitary hormones, S-100 protein (a marker of folliculo-stellate cells), or desmin (a marker of pericytes). Col1a1 and col3a1 mRNA were identified in desmin-immunopositive cells. Thus, only pericytes produce type I and III collagens in the rat anterior pituitary gland.
Collapse
Affiliation(s)
- Ken Fujiwara
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | |
Collapse
|
7
|
Kikuchi M, Sunaga K, Yatabe M, Takigami S, Sakamoto A, Yashiro T. An In Vivo and In Vitro Immunohistochemical Study of Integrin Alpha Subunit Localization in the Rat Anterior Pituitary. Acta Histochem Cytochem 2005. [DOI: 10.1267/ahc.38.381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Motoshi Kikuchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical School
| | - Kaori Sunaga
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical School
| | - Megumi Yatabe
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical School
| | - Shu Takigami
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical School
| | - Atsushi Sakamoto
- Division of Forensic Medicine, Center for Community Medicine, Jichi Medical School
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical School
| |
Collapse
|
8
|
Nishimura S, Tabata S, Nakamura YN, Okano K, Iwamoto H. Three-dimensional architecture and distribution of collagen components in the goat hypophysis. ACTA ACUST UNITED AC 2004; 277:275-86. [PMID: 15052655 DOI: 10.1002/ar.a.20014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The three-dimensional architecture of collagen fibrils in the connective tissue framework and the distribution of collagen types in the goat hypophysis were studied by the cell maceration method in combination with scanning electron microscopy (SEM) and immunohistochemistry. The pars distalis of the adenohypophysis consisted of many cell clusters. SEM revealed that the wall of cell clusters appeared as various-sized flat bundles of collagen fibrils woven in a basket-like configuration. In the pars tuberalis, the aggregates of collagen fibrils were denser and bundles thicker compared to the pars distalis. The density of collagen fibrils changed from the pars tuberalis to pars distalis without a distinct border. The collagen framework in the pars intermedia was mainly divided into three parts, the dorsal region with large hollows, the middle region, and the ventral sheet facing the cavum hypophysis. In the lobus nervosus of the neurohypophysis, the collagen network exhibited a sponge-like appearance at low magnification. Collagen fibrils of various sizes consisted of loose wavy bundles distributed around the cavities. Immunohistochemistry revealed types I, III, IV, V, and VI collagen throughout the hypophysis. It is concluded that to maintain structural and functional integration, the components of collagen are in different configurations throughout the regions of the goat hypophysis.
Collapse
Affiliation(s)
- Shotaro Nishimura
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka-shi, Japan.
| | | | | | | | | |
Collapse
|