1
|
Truong AD, Tran HTT, Thi Nguyen H, Thi Chu N, Phan L, Thi Phan H, Thi Pham N, Nguyen VH, Nguyen LH, Pham DK, Ho PH, Vu Dang H. Identification of differentially expressed genes and metabolism signaling pathway in the spleen of broilers supplemented with probiotic Bacillus spp. Vet Immunol Immunopathol 2024; 272:110755. [PMID: 38643554 DOI: 10.1016/j.vetimm.2024.110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Probiotics are essential in the body's nutrients, improving the ratio of meat to meat, immune response, and preventing diseases. In this study, RNA-sequencing (RNA-seq) was used to identify the differentially expressed genes (DEGs), enriched related pathways, and Gene Ontology (GO) terms among blank negative control (NC), supplemented with Bacillus spp. (BS) and commercial probiotic (PC) groups after a 42-day fed supplementation. The results showed that 2005, 1356, and 2189 DEGs were significantly altered in BS vs. NC, PC vs NC, and BS vs PC groups, respectively. On the other hand, 9 DEGs were further validated by qRT-PCR, indicating that the qRT-PCR and RNA-Seq results were more consistent. Therefore, the GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs showed that the DEGs were mainly enriched to metabolism signalling pathways (alpha-linolenic acid metabolism, linoleic acid metabolism, tryptophan metabolism, tyrosine metabolism, ether lipid metabolism, and metabolic pathway, etc) and immune response pathways (cytokine-cytokine receptor interaction, MAPK signalling pathway, and intestinal immune network for IgA production, neuroactive ligand-receptor interaction etc). These results will provide a better understanding of the role of probiotics in chicken development and provide basic information on the genetic development of chickens.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Huyen Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Lanh Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Hoai Thi Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Ngoc Thi Pham
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Van Hai Nguyen
- Department of Food Engineering, School of Chemistry and Life Sciences, Hanoi University of Science and Technology (HUST), Hanoi 100000, Viet Nam
| | - Lan Huong Nguyen
- Department of Bioengineering, School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Viet Nam
| | - Dang Kim Pham
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi 100000, Viet Nam; Department of Livestock Production, Ministry of Agriculture and Rural Development, 16 Thuy Khue, Tay Ho, Hanoi 100000, Viet Nam
| | - Phu-Ha Ho
- Department of Food Engineering, School of Chemistry and Life Sciences, Hanoi University of Science and Technology (HUST), Hanoi 100000, Viet Nam.
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam.
| |
Collapse
|
2
|
Kang X, Zhang J, Xu Y, Zhang X, Cui F, Li H. Knocking-out ARO80 promotes the intracellular ROS accumulation through weakening MAPK pathway of Saccharomyces cerevisiae. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Gabay-Maskit S, Cruz-Zaragoza LD, Shai N, Eisenstein M, Bibi C, Cohen N, Hansen T, Yifrach E, Harpaz N, Belostotsky R, Schliebs W, Schuldiner M, Erdmann R, Zalckvar E. A piggybacking mechanism enables peroxisomal localization of the glyoxylate cycle enzyme Mdh2 in yeast. J Cell Sci 2020; 133:jcs244376. [PMID: 33177075 PMCID: PMC7758625 DOI: 10.1242/jcs.244376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic cells have evolved organelles that allow the compartmentalization and regulation of metabolic processes. Knowledge of molecular mechanisms that allow temporal and spatial organization of enzymes within organelles is therefore crucial for understanding eukaryotic metabolism. Here, we show that the yeast malate dehydrogenase 2 (Mdh2) is dually localized to the cytosol and to peroxisomes and is targeted to peroxisomes via association with Mdh3 and a Pex5-dependent piggybacking mechanism. This dual localization of Mdh2 contributes to our understanding of the glyoxylate cycle and provides a new perspective on compartmentalization of cellular metabolism, which is critical for the perception of metabolic disorders and aging.
Collapse
Affiliation(s)
- Shiran Gabay-Maskit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luis Daniel Cruz-Zaragoza
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Nadav Shai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Bibi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tobias Hansen
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Eden Yifrach
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nofar Harpaz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruth Belostotsky
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Wolfgang Schliebs
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Yang H, Du L, Zhang Z. Potential biomarkers in septic shock besides lactate. Exp Biol Med (Maywood) 2020; 245:1066-1072. [PMID: 32276542 DOI: 10.1177/1535370220919076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPACT STATEMENT Elevated lactate has been commonly considered as a biomarker and a useful prognostic tool for resuscitation in septic shock, facilitating physician more rapid intervention and treatment. However, it can be initiated by hypoxia, but persistent hyperlactatemia may not represent persistent hypoxia only. In the article, it is the first time to review potential biomarkers in septic shock from the point of view of energy metabolism including intermediates of TCA cycle, MAS, the NAD+/NADH ratio, NAD+, NADH, malate, and MDH. And the combination of lactate and MDH is also proposed in septic shock for the first time, as MDH in cytoplasm and mitochondria participates in both MAS and TCA cycle for ATP generation. Its feasibility in clinic has been analyzed at the end, although related research is still limited. It is reasonable the combination of lactate and MDH will be more comprehensive to reflex hypoxia in septic shock.
Collapse
Affiliation(s)
- Hang Yang
- Department of Emergency Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Linlin Du
- Department of Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
5
|
Gabay-Maskit S, Schuldiner M, Zalckvar E. Validation of a yeast malate dehydrogenase 2 (Mdh2) antibody tested for use in western blots. F1000Res 2018; 7:130. [PMID: 29568493 PMCID: PMC5840644 DOI: 10.12688/f1000research.13396.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/03/2022] Open
Abstract
Malate dehydrogenases (Mdhs) reversibly convert malate to oxaloacetate and serve as important enzymes in several metabolic pathways. In the yeast
Saccharomyces cerevisiae there are three Mdh isozymes, localized to different compartments in the cell. In order to identify specifically the Mdh2 isozyme, GenScript USA produced three different antibodies that we further tested by western blot. All three antibodies recognized the
S. cerevisiae Mdh2 with different background and specificity properties. One of the antibodies had a relatively low background and high specificity and thus can be used for specific identification of Mdh2 in various experimental settings.
Collapse
Affiliation(s)
- Shiran Gabay-Maskit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|