1
|
Kalashgrani MY, Mousavi SM, Akmal MH, Gholami A, Omidifar N, Chiang WH, Lai CW, Ripaj Uddin M, Althomali RH, Rahman MM. Biosensors for metastatic cancer cell detection. Clin Chim Acta 2024; 559:119685. [PMID: 38663472 DOI: 10.1016/j.cca.2024.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Early detection and effective cancer treatment are critical to improving metastatic cancer cell diagnosis and management today. In particular, accurate qualitative diagnosis of metastatic cancer cell represents an important step in the diagnosis of cancer. Today, biosensors have been widely developed due to the daily need to measure different chemical and biological species. Biosensors are utilized to quantify chemical and biological phenomena by generating signals that are directly proportional to the quantity of the analyte present in the reaction. Biosensors are widely used in disease control, drug delivery, infection detection, detection of pathogenic microorganisms, and markers that indicate a specific disease in the body. These devices have been especially popular in the field of metastatic cancer cell diagnosis and treatment due to their portability, high sensitivity, high specificity, ease of use and short response time. This article examines biosensors for metastatic cancer cells. It also studies metastatic cancer cells and the mechanism of metastasis. Finally, the function of biosensors and biomarkers in metastatic cancer cells is investigated.
Collapse
Affiliation(s)
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (UM), 50603 Kuala Lumpur, Malaysia
| | - Md Ripaj Uddin
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Shukla AK, Yoon S, Oh SO, Lee D, Ahn M, Kim BS. Advancement in Cancer Vasculogenesis Modeling through 3D Bioprinting Technology. Biomimetics (Basel) 2024; 9:306. [PMID: 38786516 PMCID: PMC11118135 DOI: 10.3390/biomimetics9050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer vasculogenesis is a pivotal focus of cancer research and treatment given its critical role in tumor development, metastasis, and the formation of vasculogenic microenvironments. Traditional approaches to investigating cancer vasculogenesis face significant challenges in accurately modeling intricate microenvironments. Recent advancements in three-dimensional (3D) bioprinting technology present promising solutions to these challenges. This review provides an overview of cancer vasculogenesis and underscores the importance of precise modeling. It juxtaposes traditional techniques with 3D bioprinting technologies, elucidating the advantages of the latter in developing cancer vasculogenesis models. Furthermore, it explores applications in pathological investigations, preclinical medication screening for personalized treatment and cancer diagnostics, and envisages future prospects for 3D bioprinted cancer vasculogenesis models. Despite notable advancements, current 3D bioprinting techniques for cancer vasculogenesis modeling have several limitations. Nonetheless, by overcoming these challenges and with technological advances, 3D bioprinting exhibits immense potential for revolutionizing the understanding of cancer vasculogenesis and augmenting treatment modalities.
Collapse
Affiliation(s)
- Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
| | - Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
3
|
Abu-Hdaib B, Nsairat H, El-Tanani M, Al-Deeb I, Hasasna N. In vivo evaluation of mebendazole and Ran GTPase inhibition in breast cancer model system. Nanomedicine (Lond) 2024; 19:1087-1101. [PMID: 38661720 PMCID: PMC11225501 DOI: 10.2217/nnm-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: To investigate the therapeutic potential of mebendazole (MBZ)-loaded nanostructured lipid carriers (NLCs). Methodology: NLC-MBZ was prepared and characterized to evaluate the in vitro and in vivo anticancer effects and the inhibitory effect on RanGTP and its potential as an antimetastatic treatment in vivo. Results: NLC-MBZ exhibited a size and charge of 155 ± 20 nm and -27 ± 0.5 mV, respectively, with 90.7% encapsulation. Free MBZ and NLC-MBZ had a 50% inhibitory concentration of 610 and 305 nM, respectively, against MDA-MB-231 cell lines. NLC-MBZ decreased tumor size, suppressed tumor lung metastases, and lowered the expression of CDC25A, SKP2, RbX1 and Cullin1 while boosting the Rb proteins. Conclusion: NLC-MBZ displayed antiangiogenic potential and resulted in a reduced rate of lung metastasis in vivo.
Collapse
Affiliation(s)
- Balqis Abu-Hdaib
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Mohamed El-Tanani
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- College of Pharmacy, Ras Al Khaimah Medical & Health
Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ibrahim Al-Deeb
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nabil Hasasna
- Department of Cell Therapy & Applied Genomics, King
Hussein Cancer Center (KHCC), P.O. Box: 1269, Amman, 11941, Jordan
| |
Collapse
|
4
|
Duranti E, Cordani N, Villa C. Edaravone: A Novel Possible Drug for Cancer Treatment? Int J Mol Sci 2024; 25:1633. [PMID: 38338912 PMCID: PMC10855093 DOI: 10.3390/ijms25031633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in understanding the causes and progression of tumors, cancer remains one of the leading causes of death worldwide. In light of advances in cancer therapy, there has been a growing interest in drug repurposing, which involves exploring new uses for medications that are already approved for clinical use. One such medication is edaravone, which is currently used to manage patients with cerebral infarction and amyotrophic lateral sclerosis. Due to its antioxidant and anti-inflammatory properties, edaravone has also been investigated for its potential activities in treating cancer, notably as an anti-proliferative and cytoprotective drug against side effects induced by traditional cancer therapies. This comprehensive review aims to provide updates on the various applications of edaravone in cancer therapy. It explores its potential as a standalone antitumor drug, either used alone or in combination with other medications, as well as its role as an adjuvant to mitigate the side effects of conventional anticancer treatments.
Collapse
Affiliation(s)
| | | | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (N.C.)
| |
Collapse
|
5
|
Yui A, Kuroda D, Maruno T, Nakakido M, Nagatoishi S, Uchiyama S, Tsumoto K. Molecular mechanism underlying the increased risk of colorectal cancer metastasis caused by single nucleotide polymorphisms in LI-cadherin gene. Sci Rep 2023; 13:6493. [PMID: 37081068 PMCID: PMC10117238 DOI: 10.1038/s41598-023-32444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
LI-cadherin is a member of the cadherin superfamily. LI-cadherin mediates Ca2+-dependent cell-cell adhesion through homodimerization. A previous study reported two single nucleotide polymorphisms (SNPs) in the LI-cadherin-coding gene (CDH17). These SNPs correspond to the amino acid changes of Lys115 to Glu and Glu739 to Ala. Patients with colorectal cancer carrying these SNPs are reported to have a higher risk of lymph node metastasis than patients without the SNPs. Although proteins associated with metastasis have been identified, the molecular mechanisms underlying the functions of these proteins remain unclear, making it difficult to develop effective strategies to prevent metastasis. In this study, we employed biochemical assays and molecular dynamics (MD) simulations to elucidate the molecular mechanisms by which the amino acid changes caused by the SNPs in the LI-cadherin-coding gene increase the risk of metastasis. Cell aggregation assays showed that the amino acid changes weakened the LI-cadherin-dependent cell-cell adhesion. In vitro assays demonstrated a decrease in homodimerization tendency and MD simulations suggested an alteration in the intramolecular hydrogen bond network by the mutation of Lys115. Taken together, our results indicate that the increased risk of lymph node metastasis is due to weakened cell-cell adhesion caused by the decrease in homodimerization tendency.
Collapse
Affiliation(s)
- Anna Yui
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daisuke Kuroda
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- U-Medico Inc., Osaka, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Thyroglobulin expression, Ki-67 index, and lymph node ratio in the prognostic assessment of papillary thyroid cancer. Sci Rep 2023; 13:1070. [PMID: 36658256 PMCID: PMC9852547 DOI: 10.1038/s41598-023-27684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
The clinical significance of thyroglobulin (Tg) expression in papillary thyroid cancer (PTC) has not been systematically explored in relation to the Ki-67 index, lymph node ratio (LNR), or other conventional prognostic predictors. In this retrospective study of 327 patients with PTC, we investigated the immunohistochemical expression of Tg in both primary tumors and their matching lymph node metastases in relation to the Ki-67 index, LNR, and clinical data. Tumoral Tg immunoreactivity was inversely correlated to the Ki-67 index and tumor recurrence. The Ki-67 index was higher in lymph node metastases (mean 4%) than in the primary tumors (mean 3%). Reduced Tg expression, estimated as 0-25% Tg positive tumor cells, was more common in lymph node metastases compared to primary tumors. In addition to advanced metastatic burden (defined as N1b stage and LNR ≥ 21%), low Tg expression (0-25% positive tumor cells) in lymph node metastases had a significant prognostic impact with shorter recurrence-free survival. These findings support the potential value of histopathological assessment of Tg expression and Ki-67 index in lymph node metastases as complementary predictors to anticipate the prognosis of PTC patients better.
Collapse
|
7
|
Rana PS, Wang W, Markovic V, Szpendyk J, Chan ER, Sossey-Alaoui K. The WAVE2/miR-29/Integrin-β1 Oncogenic Signaling Axis Promotes Tumor Growth and Metastasis in Triple-negative Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:160-174. [PMID: 36968231 PMCID: PMC10035451 DOI: 10.1158/2767-9764.crc-22-0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women and the major cause of death because of its invasion, metastasis, and resistance to therapies capabilities. The most aggressive subtype of breast cancer is triple-negative breast cancer (TNBC) due to invasive and metastatic properties along with early age of diagnosis and poor prognosis. TNBC tumors do not express estrogen, progesterone, and HER2 receptors, which limits their treatment with targeted therapies. Cancer invasiveness and metastasis are known to be promoted by increased cell motility and upregulation of the WAVE proteins. While the contribution of WAVE2 to cancer progression is well documented, the WAVE2-mediated regulation of TNBC oncogenic properties is still under investigated, as does the molecular mechanisms by which WAVE2 regulates such oncogenic pathways. In this study, we show that WAVE2 plays a significant role in TNBC development, progression, and metastasis, through the regulation of miR-29 expression, which in turn targets Integrin-β1 (ITGB1) and its downstream oncogenic activities. Conversely, we found WAVE2 expression to be regulated by miR-29 in a negative regulatory feedback loop. Reexpression of exogenous WAVE2 in the WAVE2-deficient TNBC cells resulted in reactivation of ITGB1 expression and activity, further confirming the specificity of WAVE2 in regulating Integrin-β1. Together, our data identify a novel WAVE2/miR-29/ITGB1 signaling axis, which is essential for the regulation of the invasion-metastasis cascade in TNBC. Our findings offer new therapeutic strategies for the treatment of TNBC by targeting WAVE2 and/or its downstream effectors. Significance Identification of a novel WAVE2/miR-29/ITGB1 signaling axis may provide new insights on how WAVE2 regulates the invasion-metastasis cascade of TNBC tumors through the modulation of ITGB1 and miR-29.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Wei Wang
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | | | | | | | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| |
Collapse
|
8
|
Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, Behl T, Singh T, Sharma S, Saini AK, Dhama K, Varol M, Sethi G. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol 2023; 97:103-120. [PMID: 36443493 DOI: 10.1007/s00204-022-03421-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
ROS include hydroxyl radicals (HO.), superoxide (O2..), and hydrogen peroxide (H2O2). ROS are typically produced under physiological conditions and play crucial roles in living organisms. It is known that ROS, which are created spontaneously by cells through aerobic metabolism in mitochondria, can have either a beneficial or detrimental influence on biological systems. Moderate levels of ROS can cause oxidative damage to proteins, DNA and lipids, which can aid in the pathogenesis of many disorders, including cancer. However, excessive concentrations of ROS can initiate programmed cell death in cancer. Presently, a variety of chemotherapeutic drugs and herbal agents are being investigated to induce ROS-mediated cell death in cancer. Therefore, preserving ROS homeostasis is essential for ensuring normal cell development and survival. On account of a significant association of ROS levels at various concentrations with carcinogenesis in a number of malignancies, further studies are needed to determine the underlying molecular mechanisms and develop the possibilities for intervening in these processes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, PGIMER, Chandigarh, 160012, India
| | | | - Ujjawal Sharma
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.,Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Tejveer Singh
- Translanatal Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Sheetu Sharma
- Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura, 140401, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
9
|
Lugassy C, Kleinman HK, Barnhill RL. Monitoring Angiotropic Extravascular Migratory Metastasis In Vitro. Methods Mol Biol 2023; 2572:91-100. [PMID: 36161410 DOI: 10.1007/978-1-0716-2703-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mechanism of cancer cell migration from the primary tumor toward secondary sites is not fully understood. In addition to intravascular cellular migration, angiotropic extravascular migratory metastasis (EVMM) has been recognized as a metastatic pathway involving tumor cells crawling along the abluminal vascular surface to distant sites. A very simple in vitro 3D assay is described here, which is based on a previous in vitro angiogenesis assay. The assay involves monitoring single fluorescence-tagged migrating cancer cells in the presence of vascular structures in real time. This coculture assay represents a quantitative approach for monitoring the migration processes of cancer cells along vessels, demonstrating phenotypic switching and migration dynamics. This protocol can be used for molecular analyses and can also be adapted for screening of therapeutic agents to block cancer metastasis.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France.
| | - Hynda K Kleinman
- Department of Molecular Medicine and Biochemistry, The George Washington School of Medicine, Washington, DC, USA
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Paris, France
- Faculty of Medicine, University of Paris Réné Descartes, Paris, France
| |
Collapse
|
10
|
Strickland S, Jorns M, Heyd L, Pappas D. Novel synthesis of fibronectin derived photoluminescent carbon dots for bioimaging applications. RSC Adv 2022; 12:30487-30494. [PMID: 36337972 PMCID: PMC9597609 DOI: 10.1039/d2ra05137k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Fibronectin (FN) derived from human plasma has been used for the first time as the carbon precursor in the top-down, microwave-assisted hydrothermal synthesis of nitrogen doped carbon dots (CDs). FN is a large glycoprotein primarily known for its roles in cell adhesion and cell growth. Due to these properties FN can be over expressed in the extracellular matrix (ECM) of some cancers allowing FN to be used as an indicator for the detection of cancerous cells over non-cancerous cells. These FN derived CDs display violet photoluminescence with UV excitation and appear to possess similar functional groups on their surface to their carbon precursor (-COOH and -NH2). This is believed to be due to the self-passivation of the CDs' nitrogen-containing surface functional groups during the heating process. These CDs were then used to stain MCF-7 and MDA-231 breast cancer cells and were observed to interact primarily with the cell membrane rather than intercalating into the cell like the many other types of CDs. This led to the hypothesis that the CDs are selectively binding to the FN overexpressed within the cancer cells' ECM via amide linkages. This is in agreement with the EDX and FTIR spectra of the FN CDs which indicate the presence of -COOH and nitrogen containing surface groups like -NH3. The inherent selectivity of the CDs combined with their ability to photoluminesce enables their use as a fluorophore for bioimaging applications.
Collapse
Affiliation(s)
- Sara Strickland
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| | - Mychele Jorns
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| | - Lindsey Heyd
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| |
Collapse
|
11
|
Arafa KK, Ibrahim A, Mergawy R, El-Sherbiny IM, Febbraio F, Hassan RYA. Advances in Cancer Diagnosis: Bio-Electrochemical and Biophysical Characterizations of Cancer Cells. MICROMACHINES 2022; 13:mi13091401. [PMID: 36144024 PMCID: PMC9504238 DOI: 10.3390/mi13091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 05/09/2023]
Abstract
Cancer is a worldwide leading cause of death, and it is projected that newly diagnosed cases globally will reach 27.5 million each year by 2040. Cancers (malignant tumors), unlike benign tumors are characterized by structural and functional dedifferentiation (anaplasia), breaching of the basement membrane, spreading to adjacent tissues (invasiveness), and the capability to spread to distant sites (metastasis). In the cancer biology research field, understanding and characterizing cancer metastasis as well as features of cell death (apoptosis) is considered a technically challenging subject of study and clinically is very critical and necessary. Therefore, in addition to the cytochemical methods traditionally used, novel biophysical and bioelectrochemical techniques (e.g., cyclic voltammetry and electrochemical impedance spectroscopy), atomic force microscopy, and electron microscopic methods are increasingly being deployed to better understand these processes. Implementing those methods at the preclinical level enables the rapid screening of new anticancer drugs with understanding of their central mechanism for cancer therapy. In this review, principles and basic concepts of new techniques suggested for metastasis, and apoptosis examinations for research purposes are introduced, along with examples of each technique. From our recommendations, the privilege of combining the bio-electrochemical and biosensing techniques with the conventional cytochemical methods either for research or for biomedical diagnosis should be emphasized.
Collapse
Affiliation(s)
- Kholoud K. Arafa
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Alaa Ibrahim
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Reem Mergawy
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ibrahim M. El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Rabeay Y. A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
- Correspondence: ; Tel.: +20-1129216152
| |
Collapse
|
12
|
Park S, Cho EA, Chun JN, Lee DY, Lee S, Kim MY, Bae SM, Jo SI, Lee SH, Park HH, Kim TM, So I, Kim SY, Jeon JH. Crizotinib attenuates cancer metastasis by inhibiting TGFβ signaling in non-small cell lung cancer cells. Exp Mol Med 2022; 54:1225-1235. [PMID: 35999455 PMCID: PMC9440021 DOI: 10.1038/s12276-022-00835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Crizotinib is a clinically approved tyrosine kinase inhibitor for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring EML4-ALK fusion. Crizotinib was originally developed as an inhibitor of MET (HGF receptor), which is involved in the metastatic cascade. However, little is known about whether crizotinib inhibits tumor metastasis in NSCLC cells. In this study, we found that crizotinib suppressed TGFβ signaling by blocking Smad phosphorylation in an ALK/MET/RON/ROS1-independent manner in NSCLC cells. Molecular docking and in vitro enzyme activity assays showed that crizotinib directly inhibited the kinase activity of TGFβ receptor I through a competitive inhibition mode. Cell tracking, scratch wound, and transwell migration assays showed that crizotinib simultaneously inhibited TGFβ- and HGF-mediated NSCLC cell migration and invasion. In addition, in vivo bioluminescence imaging analysis showed that crizotinib suppressed the metastatic capacity of NSCLC cells. Our results demonstrate that crizotinib attenuates cancer metastasis by inhibiting TGFβ signaling in NSCLC cells. Therefore, our findings will help to advance our understanding of the anticancer action of crizotinib and provide insight into future clinical investigations.
Collapse
Affiliation(s)
- Soonbum Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun A Cho
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Korea
- Department of Medical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Da Young Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sanghoon Lee
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mi Yeon Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Korea
- Department of Medical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Mun Bae
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Korea
| | - Su In Jo
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Korea
| | - So Hee Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Sang-Yeob Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Korea.
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea.
| |
Collapse
|
13
|
Kumar PR, Saad M, Hellmich C, Mistry JJ, Moore JA, Conway S, Morris CJ, Bowles KM, Moncrieff MD, Rushworth SA. PGC-1α induced mitochondrial biogenesis in stromal cells underpins mitochondrial transfer to melanoma. Br J Cancer 2022; 127:69-78. [PMID: 35347324 PMCID: PMC9276678 DOI: 10.1038/s41416-022-01783-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Progress in the knowledge of metabolic interactions between cancer and its microenvironment is ongoing and may lead to novel therapeutic approaches. Until recently, melanoma was considered a glycolytic tumour due to mutations in mitochondrial-DNA, however, these malignant cells can regain OXPHOS capacity via the transfer of mitochondrial-DNA, a process that supports their proliferation in-vitro and in-vivo. Here we study how melanoma cells acquire mitochondria and how this process is facilitated from the tumour microenvironment. METHODS Primary melanoma cells, and MSCs derived from patients were obtained. Genes' expression and DNA quantification was analysed using Real-time PCR. MSC migration, melanoma proliferation and tumour volume, in a xenograft subcutaneous mouse model, were monitored through bioluminescent live animal imaging. RESULTS Human melanoma cells attract bone marrow-derived stromal cells (MSCs) to the primary tumour site where they stimulate mitochondrial biogenesis in the MSCs through upregulation of PGC1a. Mitochondria are transferred to the melanoma cells via direct contact with the MSCs. Moreover, inhibition of MSC-derived PGC1a was able to prevent mitochondrial transfer and improve NSG melanoma mouse tumour burden. CONCLUSION MSC mitochondrial biogenesis stimulated by melanoma cells is prerequisite for mitochondrial transfer and subsequent tumour growth, where targeting this pathway may provide an effective novel therapeutic approach in melanoma.
Collapse
Affiliation(s)
- Prakrit R Kumar
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Mona Saad
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
- Department of Plastic and Reconstructive Surgery, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, NR4 7UY, UK
| | - Charlotte Hellmich
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, NR4 7UY, UK
| | - Jayna J Mistry
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jamie A Moore
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Shannon Conway
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Christopher J Morris
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, NR4 7UY, UK
| | - Marc D Moncrieff
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK.
- Department of Plastic and Reconstructive Surgery, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, NR4 7UY, UK.
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK.
| |
Collapse
|
14
|
Margarido AS, Uceda-Castro R, Hahn K, de Bruijn R, Kester L, Hofland I, Lohuis J, Seinstra D, Broeks A, Jonkers J, Broekman MLD, Wesseling P, Vennin C, Vizoso M, van Rheenen J. Epithelial-to-Mesenchymal Transition Drives Invasiveness of Breast Cancer Brain Metastases. Cancers (Basel) 2022; 14:cancers14133115. [PMID: 35804890 PMCID: PMC9264851 DOI: 10.3390/cancers14133115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022] Open
Abstract
(1) Background: an increasing number of breast cancer patients develop lethal brain metastases (BM). The complete removal of these tumors by surgery becomes complicated when cells infiltrate into the brain parenchyma. However, little is known about the nature of these invading cells in breast cancer brain metastasis (BCBM). (2) Methods: we use intravital microscopy through a cranial window to study the behavior of invading cells in a mouse model of BCBM. (3) Results: we demonstrate that BCBM cells that escape from the metastatic mass and infiltrate into brain parenchyma undergo epithelial-to-mesenchymal transition (EMT). Moreover, cells undergoing EMT revert to an epithelial state when growing tumor masses in the brain. Lastly, through multiplex immunohistochemistry, we confirm the presence of these infiltrative cells in EMT in patient samples. (4) Conclusions: together, our data identify the critical role of EMT in the invasive behavior of BCBM, which warrants further consideration to target those cells when treating BCBM.
Collapse
Affiliation(s)
- Andreia S. Margarido
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Rebeca Uceda-Castro
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Kerstin Hahn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Lennart Kester
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (I.H.); (A.B.)
| | - Jeroen Lohuis
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Danielle Seinstra
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.S.); (P.W.)
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (I.H.); (A.B.)
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Marike L. D. Broekman
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Department of Neurosurgery, Haaglanden Medical Center, Lijnbaan, 2512 VA The Hague, The Netherlands
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.S.); (P.W.)
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Claire Vennin
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
| | - Miguel Vizoso
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
- Correspondence: (M.V.); (J.v.R.)
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (A.S.M.); (R.U.-C.); (K.H.); (R.d.B.); (L.K.); (J.L.); (J.J.); (C.V.)
- Correspondence: (M.V.); (J.v.R.)
| |
Collapse
|
15
|
Lugassy C, Vermeulen PB, Ribatti D, Pezzella F, Barnhill RL. Vessel co-option and angiotropic extravascular migratory metastasis: a continuum of tumour growth and spread? Br J Cancer 2022; 126:973-980. [PMID: 34987186 PMCID: PMC8980005 DOI: 10.1038/s41416-021-01686-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Two fields of cancer research have emerged dealing with the biology of tumour cells localised to the abluminal vascular surface: vessel co-option (VCo), a non-angiogenic mode of tumour growth and angiotropic extravascular migratory metastasis (EVMM), a non-hematogenous mode of tumour migration and metastasis. VCo is a mechanism by which tumour cells gain access to a blood supply by spreading along existing blood vessels in order to grow locally. Angiotropic EVMM involves "pericytic mimicry" (PM), which is characterised by tumour cells continuously migrating in the place of pericytes distantly along abluminal vascular surfaces. When cancer cells are engaged in PM and EVMM, they migrate along blood vessels beyond the advancing front of the tumour to secondary sites with the formation of regional and distant metastases. In the present perspective, the authors review the current scientific literature, emphasising the analogies between embryogenesis and cancer progression, the re-activation of embryonic signals by "cancer stem cells", and the important role of laminins and epithelial-mesenchymal-transition. This perspective maintains that VCo and angiotropic EVMM constitute complementary processes and represent a continuum of cancer progression from the primary tumour to metastases and of tumour growth to EVMM, analogous to the embryonic development program.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France.
| | - Peter B Vermeulen
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus, Antwerp, Belgium
- Center for Oncological Research (CORE, Faculty of Medicine and Health Sciences), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Paris, France
- University of Paris UFR de Médecine, Paris, France
| |
Collapse
|
16
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
17
|
Wu Y, Zhang T, Zhang X, Gao Q. Decoding the complexity of metastasis. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0031. [PMID: 35289156 PMCID: PMC8958888 DOI: 10.20892/j.issn.2095-3941.2022.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yingcheng Wu
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tiancheng Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Singh R, Manna PP. Reactive oxygen species in cancer progression and its role in therapeutics. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The redox status in pathogenesis is critically regulated by careful balance between the generation of reactive oxygen species (ROS) and their elimination. Increased ROS level above the cellular tolerability threshold results in apoptotic or necrotic cell death. ROS belongs to a group of highly reactive compounds that have evolved to play key roles in cellular signaling pathways. It’s widely assumed that a reasonable amount of ROS is essential for a variety of biological processes. Elevated levels of ROS are known to cause various pathologic conditions like neurological disorders, cardiovascular conditions, inflammation, autoimmunity, and cancer. ROS is well known to initiate and assist in progression of tumor by promoting proliferation and survival of cancer cells and thus facilitates pro-tumorigenic signaling in tumor microenvironment. As cancer cells become more resilient to the effects of ROS manipulating drugs, increased antioxidant capacity attenuates their susceptibility to cancer treatment. Excessive environmental stress, on the other hand, can cause cancer cells to die. This review summarizes various molecular mechanisms including the role of checkpoint inhibitors that can be harnessed to develop effective therapeutic strategies for targeting ROS
related signaling in cancer.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
19
|
Bekhet OH, Eid ME. The interplay between reactive oxygen species and antioxidants in cancer progression and therapy: a narrative review. Transl Cancer Res 2022; 10:4196-4206. [PMID: 35116715 PMCID: PMC8799102 DOI: 10.21037/tcr-21-629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
Objective To unveil the role of reactive oxygen species (ROS) and antioxidants in signaling and involvement in cancer progression and therapy. Background Cancer is considered one of the main causes of mortality in developed countries and expected to be more in developing countries as well. Although some cancers may develop at young age, yet almost all types of cancers are an accumulation of genetic and epigenetic cell damages. Cancer is considered a diverse collection of diseases on a cellular level rather than a single disease; and each disease has a different cause as well. ROS have been seen as harmful toxic molecules; however, they are recognized for cellular signaling capabilities. Elevated levels of ROS have protumorigenic activities; they induce cancer cell proliferation, and adaptation to hypoxia in addition to other effects like DNA damage and genetic instability. They are produced excessively by cancer cells to hyperactivate cellular transformation meanwhile increasing antioxidant capacity to avoid cell death. Methods We discussed peer reviewed published research work from 1987 to 2021. In this paper, we review the role of antioxidants as defensive barrier against excessive ROS levels for maintaining oxidation-reduction (redox) balance; however, antioxidant can also strive in tumor cells with their scavenging capacities and maintain protumorigenic signaling and resist the cancer cell oxidative stress and apoptosis. High doses of antioxidant compounds could be toxic to cells as they are capable of reacting with the physiological concentrations of ROS present for normal cellular processes and signaling. Conclusions Maintaining cellular redox homeostasis is vital for healthy biological system. Therefore, therapeutic modalities for cancer including antioxidants and ROS management should be used at certain doses to target specific redox pathways involved in cancer progression without disrupting the overall redox balance in normal cells.
Collapse
Affiliation(s)
- Osama Hussein Bekhet
- Pole of Endocrinology, Diabetes and Nutrition, Catholic University of Louvain, Woluwe-Saint-Lambert, Belgium
| | - Mohamed Elsayed Eid
- Laboratory of Natural Products Chemistry, Mediterranean Agronomic Institute of Chania, Crete, Greece
| |
Collapse
|
20
|
Alam M, Ali S, Ashraf GM, Bilgrami AL, Yadav DK, Hassan MI. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem 2022; 379:132135. [PMID: 35063850 DOI: 10.1016/j.foodchem.2022.132135] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) possesses various biological functions, including anti-cancer and anti-inflammatory properties. EGCG is an abundant polyphenolic component originating from green tea extract that has exhibited versatile bioactivities in combating several cancers. This review highlights the pharmacological features of EGCG and its therapeutic implications in cancer and other metabolic diseases. It modulates numerous signaling pathways, regulating cells' undesired survival and proliferation, thus imparting strong tumor chemopreventive and therapeutic effects. EGCG initiates cell death through the intrinsic pathway and causes inhibition of EGFR, STAT3, and ERK pathways in several cancers. EGCG alters and inhibits ERK1/2, NF-κB, and Akt-mediated signaling, altering the Bcl-2 family proteins ratio and activating caspases in tumor cells. This review focuses on anti-cancer, anti-oxidant, anti-inflammatory, anti-angiogenesis, and apoptotic effects of EGCG. We further highlighted the potential of EGCG in different types of cancer, emphasizing clinical trials formulations that further improve our understanding of the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
21
|
Gava F, Pignolet J, Déjean S, Mondésert O, Morin R, Agossa J, Ducommun B, Lobjois V. Quantitative Analysis of Cell Aggregation Dynamics Identifies HDAC Inhibitors as Potential Regulators of Cancer Cell Clustering. Cancers (Basel) 2021; 13:cancers13225840. [PMID: 34830995 PMCID: PMC8616495 DOI: 10.3390/cancers13225840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Metastases formation involves the formation, circulation and seeding of cohesive group of tumor cells called circulating tumors cells clusters at distant organs from the primary tumor. These clusters have a much higher metastatic potential than individual circulating tumor cell, it is therefore important to understand the molecular mechanisms involved in their formation. To this aim, in this study, from the analysis of the relationship between in vitro aggregation quantitative characterization of 25 cancer cell lines and their expression data, we identified genes significantly associated with aggregation. Interestingly, we found that these genes were strongly correlated with the transcriptional signature induced by HDAC inhibitors treatment and we finally showed experimentally that two HDAC inhibitors inhibits tumor cells cluster formation in vitro. These results open new therapeutic perspectives to prevent metastasis formation. Abstract Characterization of the molecular mechanisms involved in tumor cell clustering could open the way to new therapeutic strategies. Towards this aim, we used an in vitro quantitative procedure to monitor the anchorage-independent cell aggregation kinetics in a panel of 25 cancer cell lines. The analysis of the relationship between selected aggregation dynamic parameters and the gene expression data for these cell lines from the CCLE database allowed identifying genes with expression significantly associated with aggregation parameter variations. Comparison of these transcripts with the perturbagen signatures from the Connectivity Map resource highlighted that they were strongly correlated with the transcriptional signature of most histone deacetylase (HDAC) inhibitors. Experimental evaluation of two HDAC inhibitors (SAHA and ISOX) showed that they inhibited the initial step of in vitro tumor cell aggregation. This validates our findings and reinforces the potential interest of HDCA inhibitors to prevent metastasis spreading.
Collapse
Affiliation(s)
- Fabien Gava
- Institut des Technologies Avancées en Sciences du Vivant (ITAV)-USR3505, Université de Toulouse, CNRS, Université Paul Sabatier, 31100 Toulouse, France; (F.G.); (J.P.); (O.M.); (J.A.); (B.D.)
| | - Julie Pignolet
- Institut des Technologies Avancées en Sciences du Vivant (ITAV)-USR3505, Université de Toulouse, CNRS, Université Paul Sabatier, 31100 Toulouse, France; (F.G.); (J.P.); (O.M.); (J.A.); (B.D.)
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse (IMT)-UMR5219, Université de Toulouse, CNRS, Université Paul Sabatier, 31062 Toulouse, France;
| | - Odile Mondésert
- Institut des Technologies Avancées en Sciences du Vivant (ITAV)-USR3505, Université de Toulouse, CNRS, Université Paul Sabatier, 31100 Toulouse, France; (F.G.); (J.P.); (O.M.); (J.A.); (B.D.)
| | - Renaud Morin
- Imactiv-3D SAS, 1 Place Pierre POTIER, 31100 Toulouse, France;
| | - Joseph Agossa
- Institut des Technologies Avancées en Sciences du Vivant (ITAV)-USR3505, Université de Toulouse, CNRS, Université Paul Sabatier, 31100 Toulouse, France; (F.G.); (J.P.); (O.M.); (J.A.); (B.D.)
- Institut de Mathématiques de Toulouse (IMT)-UMR5219, Université de Toulouse, CNRS, Université Paul Sabatier, 31062 Toulouse, France;
| | - Bernard Ducommun
- Institut des Technologies Avancées en Sciences du Vivant (ITAV)-USR3505, Université de Toulouse, CNRS, Université Paul Sabatier, 31100 Toulouse, France; (F.G.); (J.P.); (O.M.); (J.A.); (B.D.)
- CHU de Toulouse, 31000 Toulouse, France
| | - Valérie Lobjois
- Institut des Technologies Avancées en Sciences du Vivant (ITAV)-USR3505, Université de Toulouse, CNRS, Université Paul Sabatier, 31100 Toulouse, France; (F.G.); (J.P.); (O.M.); (J.A.); (B.D.)
- Molecular, Cellular & Developmental Biology Unit (MCD)–UMR5577, Center for Integrative Biology (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, 31062 Toulouse, France
- Correspondence:
| |
Collapse
|
22
|
Pal A, Haliti P, Dharmadhikari B, Qi W, Patra P. Manipulating Extracellular Matrix Organizations and Parameters to Control Local Cancer Invasion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2566-2576. [PMID: 32324564 DOI: 10.1109/tcbb.2020.2989223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metastasis contributes to over 90 percent of cancer mortalities and may be influenced by the extracellular matrix (ECM). ECM microenvironments differ in matrix organization, cell-matrix adhesions, and fiber rigidity, which may affect cancer migration and, thus, should be investigated. To understand the interactions between cancer cells and the ECM, we simulate local invasion through ECM organizations of varying determinants. Randomly curved organizations of normal ovarian stroma exhibit minimal local invasion. In contrast, wave-like and parallel linear structures in reorganized ECM organizations provide contact guidance, which increases cancer invasiveness. ECM organizations with strong cell-matrix attachments generate cell pseudopodia, which aid in increasing invasion rate, while weaker attachments prevent the cells from attaching to the fibers and forming pseudopodia, limiting local invasion. ECM organizations with rigid fibers elongate the cell body, allowing them to form cell protrusions and spread rapidly. Conversely, soft fibers stimulate cell rounding and limit migration. Optimizing cell-matrix adhesions and fiber rigidity results in below 10 percent local invasion and reinforces the importance of using computational modeling to discover novel approaches to restricting cancer movement.
Collapse
|
23
|
Martínez-Gregorio H, Rojas-Jiménez E, Mejía-Gómez JC, Díaz-Velásquez C, Quezada-Urban R, Vallejo-Lecuona F, de la Cruz-Montoya A, Porras-Reyes FI, Pérez-Sánchez VM, Maldonado-Martínez HA, Robles-Estrada M, Bargalló-Rocha E, Cabrera-Galeana P, Ramos-Ramírez M, Chirino YI, Alonso Herrera L, Terrazas LI, Frecha C, Oliver J, Perdomo S, Vaca-Paniagua F. The Evolution of Clinically Aggressive Triple-Negative Breast Cancer Shows a Large Mutational Diversity and Early Metastasis to Lymph Nodes. Cancers (Basel) 2021; 13:5091. [PMID: 34680239 PMCID: PMC8534164 DOI: 10.3390/cancers13205091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
In triple-negative breast cancer (TNBC), only 30% of patients treated with neoadjuvant chemotherapy achieve a pathological complete response after treatment and more than 90% die due to metastasis formation. The diverse clinical responses and metastatic developments are attributed to extensive intrapatient genetic heterogeneity and tumor evolution acting on this neoplasm. In this work, we aimed to evaluate genomic alterations and tumor evolution in TNBC patients with aggressive disease. We sequenced the whole exome of 16 lesions from four patients who did not respond to therapy, and took several follow-up samples, including samples from tumors before and after treatment, as well as from the lymph nodes and skin metastases. We found substantial intrapatient genetic heterogeneity, with a variable tumor mutational composition. Early truncal events were MCL1 amplifications. Metastatic lesions had deletions in RB1 and PTEN, along with TERT, AKT2, and CCNE1 amplifications. Mutational signatures 06 and 12 were mainly detected in skin metastases and lymph nodes. According to phylogenetic analysis, the lymph node metastases occurred at an early stage of TNBC development. Finally, each patient had three to eight candidate driving mutations for targeted treatments. This study delves into the genomic complexity and the phylogenetic and evolutionary development of aggressive TNBC, supporting early metastatic development, and identifies specific genetic alterations associated with a response to targeted therapies.
Collapse
Affiliation(s)
- Héctor Martínez-Gregorio
- Posgrado en Ciencias Biológicas de la Universidad Nacional Autonóma de Mexico, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City 54090, Mexico;
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Ernesto Rojas-Jiménez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Javier César Mejía-Gómez
- Division of Breast Cancer, Department of Medical Oncology, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada;
| | - Clara Díaz-Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (F.V.-L.); (L.I.T.)
| | - Rosalía Quezada-Urban
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Fernando Vallejo-Lecuona
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Aldo de la Cruz-Montoya
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Fany Iris Porras-Reyes
- Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (F.I.P.-R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | - Víctor Manuel Pérez-Sánchez
- Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (F.I.P.-R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | - Héctor Aquiles Maldonado-Martínez
- Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (F.I.P.-R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | | | - Enrique Bargalló-Rocha
- Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (F.I.P.-R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | - Paula Cabrera-Galeana
- Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (F.I.P.-R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | - Maritza Ramos-Ramírez
- Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (F.I.P.-R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | - Yolanda Irasema Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Luis Alonso Herrera
- Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (F.I.P.-R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
- Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas—Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Luis Ignacio Terrazas
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Cecilia Frecha
- Unidad de Producción Celular del Hospital Regional Universitario de Málaga—IBIMA—Málaga, 29010 Málaga, Spain;
| | - Javier Oliver
- Medical Oncology Service, Hospitales Universitarios Regional y Virgen de la Victoria, Institute of Biomedical Research in Malaga, CIMES, University of Málaga, 29010 Málaga, Spain;
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 150 Cours Albert Thomas, 69372 Lyon, France;
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
- Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (F.I.P.-R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| |
Collapse
|
24
|
Noh MG, Kim SS, Kim YJ, Jung TY, Jung S, Rhee JH, Lee JH, Lee JS, Cho JH, Moon KS, Park H, Lee KH. Evolution of the Tumor Microenvironment toward Immune-Suppressive Seclusion during Brain Metastasis of Breast Cancer: Implications for Targeted Therapy. Cancers (Basel) 2021; 13:cancers13194895. [PMID: 34638378 PMCID: PMC8507988 DOI: 10.3390/cancers13194895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Brain metastases (BM) of breast cancer (BC) are new targets of immunotherapy, but their characteristics are unclear. Therefore, we analyzed the differential expression profile of the tumor microenvironment (TME) in primary breast cancer brain metastasis (BCBM). In the TME of BCBM, immune-related pathways were downregulated and tumor intrinsic factors were upregulated. Moreover, CD8+ T cells and M1 macrophages with cytotoxic effects were decreased, but M2 cells were increased, in BM. Most tumor-suppressive immune functions ceased after BM with a molecular subtype shift. These results suggest the need for targeted therapy and immunotherapy strategies for BCBM. Abstract Breast cancer (BC) is the second most common solid malignant tumor that metastasizes to the brain. Despite emerging therapies such as immunotherapy, whether the tumor microenvironment (TME) in breast cancer brain metastasis (BCBM) has potential as a target of new treatments is unclear. Expression profiling of 770 genes in 12 pairs of primary BC and matched brain metastasis (BM) samples was performed using the NanoString nCounter PanCancer IO360TM Panel. Immune cell profiles were validated by immunohistochemistry (IHC) in samples from 50 patients with BCBM. Pathway analysis revealed that immune-related pathways were downregulated. Immune cell profiling showed that CD8+ T cells and M1 macrophages were significantly decreased, and M2 macrophages were significantly increased, in BM compared to primary BC samples (p = 0.001, p = 0.021 and p = 0.007, respectively). CCL19 and CCL21, the top differentially expressed genes, were decreased significantly in BM compared to primary BC (p < 0.001, both). IHC showed that the CD8+ count was significantly lower (p = 0.027), and the CD163+ and CD206+ counts were higher, in BM than primary BC (p < 0.001, both). A low CD8+ T cell count, low CD86+ M1 macrophage count, and high M2/M1 macrophage ratio were related to unfavorable clinical outcomes. BC exhibits an immunosuppressive characteristic after metastasis to the brain. These findings will facilitate establishment of a treatment strategy for BCBM based on the TME of metastatic cancer.
Collapse
Affiliation(s)
- Myung-Giun Noh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; or
| | - Sung Sun Kim
- Department of Pathology, Chonnam National University Hwasun Hospital and Medical School, Chonnam National University Research Institute of Medical Science, BioMedical Sciences Graduate Program (BMSGP), Hwasun 58128, Korea; (S.S.K.); (J.-H.L.); (J.-S.L.)
| | - Yeong Jin Kim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Chonnam National University Research Institute of Medical Science, Hwasun 58128, Korea; (Y.J.K.); (T.-Y.J.); (S.J.); (K.-S.M.)
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Chonnam National University Research Institute of Medical Science, Hwasun 58128, Korea; (Y.J.K.); (T.-Y.J.); (S.J.); (K.-S.M.)
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Chonnam National University Research Institute of Medical Science, Hwasun 58128, Korea; (Y.J.K.); (T.-Y.J.); (S.J.); (K.-S.M.)
| | - Joon-Haeng Rhee
- Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Korea; (J.-H.R.); (J.-H.C.)
| | - Jae-Hyuk Lee
- Department of Pathology, Chonnam National University Hwasun Hospital and Medical School, Chonnam National University Research Institute of Medical Science, BioMedical Sciences Graduate Program (BMSGP), Hwasun 58128, Korea; (S.S.K.); (J.-H.L.); (J.-S.L.)
| | - Ji-Shin Lee
- Department of Pathology, Chonnam National University Hwasun Hospital and Medical School, Chonnam National University Research Institute of Medical Science, BioMedical Sciences Graduate Program (BMSGP), Hwasun 58128, Korea; (S.S.K.); (J.-H.L.); (J.-S.L.)
| | - Jae-Ho Cho
- Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Korea; (J.-H.R.); (J.-H.C.)
- Immunotherapy Innovation Center, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Chonnam National University Research Institute of Medical Science, Hwasun 58128, Korea; (Y.J.K.); (T.-Y.J.); (S.J.); (K.-S.M.)
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; or
- Correspondence: (H.P.); (K.-H.L.); Tel.: +82-62-715-5415 (H.P.); +82-61-379-7050 (K.-H.L.)
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital and Medical School, Chonnam National University Research Institute of Medical Science, BioMedical Sciences Graduate Program (BMSGP), Hwasun 58128, Korea; (S.S.K.); (J.-H.L.); (J.-S.L.)
- Immunotherapy Innovation Center, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea
- Correspondence: (H.P.); (K.-H.L.); Tel.: +82-62-715-5415 (H.P.); +82-61-379-7050 (K.-H.L.)
| |
Collapse
|
25
|
Gaurav I, Wang X, Thakur A, Iyaswamy A, Thakur S, Chen X, Kumar G, Li M, Yang Z. Peptide-Conjugated Nano Delivery Systems for Therapy and Diagnosis of Cancer. Pharmaceutics 2021; 13:1433. [PMID: 34575511 PMCID: PMC8471603 DOI: 10.3390/pharmaceutics13091433] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides are strings of approximately 2-50 amino acids, which have gained huge attention for theranostic applications in cancer research due to their various advantages including better biosafety, customizability, convenient process of synthesis, targeting ability via recognizing biological receptors on cancer cells, and better ability to penetrate cell membranes. The conjugation of peptides to the various nano delivery systems (NDS) has been found to provide an added benefit toward targeted delivery for cancer therapy. Moreover, the simultaneous delivery of peptide-conjugated NDS and nano probes has shown potential for the diagnosis of the malignant progression of cancer. In this review, various barriers hindering the targeting capacity of NDS are addressed, and various approaches for conjugating peptides and NDS have been discussed. Moreover, major peptide-based functionalized NDS targeting cancer-specific receptors have been considered, including the conjugation of peptides with extracellular vesicles, which are biological nanovesicles with promising ability for therapy and the diagnosis of cancer.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Xuehan Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong, China;
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India;
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Gaurav Kumar
- School of Basic and Applied Science, Galgotias University, Greater Noida 203201, India;
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
26
|
Wessels DJ, Pujol C, Pradhan N, Lusche DF, Gonzalez L, Kelly SE, Martin EM, Voss ER, Park YN, Dailey M, Sugg SL, Phadke S, Bashir A, Soll DR. Directed movement toward, translocation along, penetration into and exit from vascular networks by breast cancer cells in 3D. Cell Adh Migr 2021; 15:224-248. [PMID: 34338608 PMCID: PMC8331046 DOI: 10.1080/19336918.2021.1957527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We developed a computer-assisted platform using laser scanning confocal microscopy to 3D reconstruct in real-time interactions between metastatic breast cancer cells and human umbilical vein endothelial cells (HUVECs). We demonstrate that MB-231 cancer cells migrate toward HUVEC networks, facilitated by filopodia, migrate along the network surfaces, penetrate into and migrate within the HUVEC networks, exit and continue migrating along network surfaces. The system is highly amenable to 3D reconstruction and computational analyses, and assessments of the effects of potential anti-metastasis monoclonal antibodies and other drugs. We demonstrate that an anti-RHAMM antibody blocks filopodium formation and all of the behaviors that we found take place between MB-231 cells and HUVEC networks.
Collapse
Affiliation(s)
- Deborah J Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Claude Pujol
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Nikash Pradhan
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Luis Gonzalez
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sydney E Kelly
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Elizabeth M Martin
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Edward R Voss
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Yang-Nim Park
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Michael Dailey
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sonia L Sugg
- Department of Surgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sneha Phadke
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Amani Bashir
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
27
|
Zdżalik-Bielecka D, Poświata A, Kozik K, Jastrzębski K, Schink KO, Brewińska-Olchowik M, Piwocka K, Stenmark H, Miączyńska M. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci U S A 2021; 118:e2024596118. [PMID: 34244439 PMCID: PMC8285903 DOI: 10.1073/pnas.2024596118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| |
Collapse
|
28
|
Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A, Mirzaei H. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy. Curr Mol Med 2021; 20:90-101. [PMID: 31573883 DOI: 10.2174/1566524019666191001113511] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Lung cancer is the first cause of cancer death in the world due to its high prevalence, aggressiveness, late diagnosis, lack of effective treatment and poor prognosis. It also shows high rate of recurrence, metastasis and drug resistance. All these problems highlight the urgent needs for developing new strategies using noninvasive biomarkers for early detection, metastasis and recurrence of disease. MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression post-transcriptionally. These molecules found to be abnormally expressed in increasing number of human disease conditions including cancer. miRNAs could be detected in body fluids such as blood, serum, urine and sputum, which leads us towards the idea of using them as non-invasive biomarker for cancer detection and monitoring cancer treatment and recurrence. miRNAs are found to be deregulated in lung cancer initiation and progression and could regulate lung cancer cell proliferation and invasion. In this review, we summarized recent progress and discoveries in microRNAs regulatory role in lung cancer initiation and progression. In addition, the role of microRNAs in EGFR signaling pathway regulation is discussed briefly.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
29
|
Zuo L, Wijegunawardana D. Redox Role of ROS and Inflammation in Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:187-204. [PMID: 34019270 DOI: 10.1007/978-3-030-68748-9_11] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS), either derived from exogenous sources or overproduced endogenously, can disrupt the body's antioxidant defenses leading to compromised redox homeostasis. The lungs are highly susceptible to ROS-mediated damage. Oxidative stress (OS) caused by this redox imbalance leads to the pathogenesis of multiple pulmonary diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). OS causes damage to important cellular components in terms of lipid peroxidation, protein oxidation, and DNA histone modification. Inflammation further enhances ROS production inducing changes in transcriptional factors which mediate cellular stress response pathways. This deviation from normal cell function contributes to the detrimental pathological characteristics often seen in pulmonary diseases. Although antioxidant therapies are feasible approaches in alleviating OS-related lung impairment, a comprehensive understanding of the updated role of ROS in pulmonary inflammation is vital for the development of optimal treatments. In this chapter, we review the major pulmonary diseases-including COPD, asthma, ARDS, COVID-19, and lung cancer-as well as their association with ROS.
Collapse
Affiliation(s)
- Li Zuo
- College of Arts and Sciences, Molecular Physiology and Biophysics Lab, University of Maine, Presque Isle Campus, Presque Isle, ME, USA. .,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
30
|
A pilot study to investigate if the mesenteric circumferential location of colon cancer affects survival when compared to the anti-mesenteric side. Sci Rep 2021; 11:10422. [PMID: 34001917 PMCID: PMC8129114 DOI: 10.1038/s41598-021-88320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/03/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer is a leading cause of death in the western world. The main datum that is employed to guide treatment and prognosis are related to the pathological stage and the genetics of the cancer. Recent electron-microscopic study of the colonic border has suggested a difference between the micro-anatomy of the mesenteric border11, compared to the anti-mesenteric. With colorectal cancer increasing in incidence, the more information that we can employ to guide and tailor patient centred management, the better. A pilot study to test the hypothesis that the circumferential location on the colonic wall, mesenteric or anti-mesenteric, has an impact on the mortality rate associated with right-sided colon cancer. All patients undergoing a right hemicolectomy for non-metastatic adenocarcinoma between 2010 and 2013 were included (155 patients in total). T and N stage were recorded. There was no statistical difference between the groups for age or sex. Survival rates were then calculated according to the location of the cancer and analysed using Kaplan-Meir survival calculations. 100 patients were included in the final analysis. 90 patients had cancer on the antimesenteric border. The T and N stage were not statistically different between the two groups. The mean all-cause survival was 44 months for the mesenteric group and 77 for the antimesenteric (P = 0.002). Disease free survival was 41 versus 60 months accordingly (P = 0.021). Mesenteric cancer appears to have a shorter survival time, and may be a good candidate for future prognostication and treatment algorithms. Interesting this survival difference is observed even with a lower average T stage in the mesenteric group. The histological recording of the circumferential location is a zero cost and easy metric to record.
Collapse
|
31
|
Mostavi M, Chiu YC, Chen Y, Huang Y. CancerSiamese: one-shot learning for predicting primary and metastatic tumor types unseen during model training. BMC Bioinformatics 2021; 22:244. [PMID: 33980137 PMCID: PMC8117642 DOI: 10.1186/s12859-021-04157-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The state-of-the-art deep learning based cancer type prediction can only predict cancer types whose samples are available during the training where the sample size is commonly large. In this paper, we consider how to utilize the existing training samples to predict cancer types unseen during the training. We hypothesize the existence of a set of type-agnostic expression representations that define the similarity/dissimilarity between samples of the same/different types and propose a novel one-shot learning model called CancerSiamese to learn this common representation. CancerSiamese accepts a pair of query and support samples (gene expression profiles) and learns the representation of similar or dissimilar cancer types through two parallel convolutional neural networks joined by a similarity function. RESULTS We trained CancerSiamese for cancer type prediction for primary and metastatic tumors using samples from the Cancer Genome Atlas (TCGA) and MET500. Network transfer learning was utilized to facilitate the training of the CancerSiamese models. CancerSiamese was tested for different N-way predictions and yielded an average accuracy improvement of 8% and 4% over the benchmark 1-Nearest Neighbor (1-NN) classifier for primary and metastatic tumors, respectively. Moreover, we applied the guided gradient saliency map and feature selection to CancerSiamese to examine 100 and 200 top marker-gene candidates for the prediction of primary and metastatic cancers, respectively. Functional analysis of these marker genes revealed several cancer related functions between primary and metastatic tumors. CONCLUSION This work demonstrated, for the first time, the feasibility of predicting unseen cancer types whose samples are limited. Thus, it could inspire new and ingenious applications of one-shot and few-shot learning solutions for improving cancer diagnosis, prognostic, and our understanding of cancer.
Collapse
Affiliation(s)
- Milad Mostavi
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
32
|
Wu Y, Zanotelli MR, Zhang J, Reinhart-King CA. Matrix-driven changes in metabolism support cytoskeletal activity to promote cell migration. Biophys J 2021; 120:1705-1717. [PMID: 33705759 PMCID: PMC8204337 DOI: 10.1016/j.bpj.2021.02.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 01/21/2023] Open
Abstract
The microenvironment provides both active and passive mechanical cues that regulate cell morphology, adhesion, migration, and metabolism. Although the cellular response to those mechanical cues often requires energy-intensive actin cytoskeletal remodeling and actomyosin contractility, it remains unclear how cells dynamically adapt their metabolic activity to altered mechanical cues to support migration. Here, we investigated the changes in cellular metabolic activity in response to different two-dimensional and three-dimensional microenvironmental conditions and how these changes relate to cytoskeletal activity and migration. Utilizing collagen micropatterning on polyacrylamide gels, intracellular energy levels and oxidative phosphorylation were found to be correlated with cell elongation and spreading and necessary for membrane ruffling. To determine whether this relationship holds in more physiological three-dimensional matrices, collagen matrices were used to show that intracellular energy state was also correlated with protrusive activity and increased with matrix density. Pharmacological inhibition of oxidative phosphorylation revealed that cancer cells rely on oxidative phosphorylation to meet the elevated energy requirements for protrusive activity and migration in denser matrices. Together, these findings suggest that mechanical regulation of cytoskeletal activity during spreading and migration by the physical microenvironment is driven by an altered metabolic profile.
Collapse
Affiliation(s)
- Yusheng Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Matthew R Zanotelli
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jian Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
33
|
Ruiz-Espigares J, Nieto D, Moroni L, Jiménez G, Marchal JA. Evolution of Metastasis Study Models toward Metastasis-On-A-Chip: The Ultimate Model? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006009. [PMID: 33705602 DOI: 10.1002/smll.202006009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Indexed: 06/12/2023]
Abstract
For decades, several attempts have been made to obtain a mimetic model for the study of metastasis, the reason of most of deaths caused by cancer, in order to solve the unknown phenomena surrounding this disease. To better understand this cellular dissemination process, more realistic models are needed that are capable of faithfully recreating the entire and essential tumor microenvironment (TME). Thus, new tools known as tumor-on-a-chip and metastasis-on-a-chip have been recently proposed. These tools incorporate microfluidic systems and small culture chambers where TME can be faithfully modeled thanks to 3D bioprinting. In this work, a literature review has been developed about the different phases of metastasis, the remaining unknowns and the use of new models to study this disease. The aim is to provide a global vision of the current panorama and the great potential that these systems have for in vitro translational research on the molecular basis of the pathology. In addition, these models will allow progress toward a personalized medicine, generating chips from patient samples that mimic the original tumor and the metastatic process to perform a precise pharmacological screening by establishing the most appropriate treatment protocol.
Collapse
Affiliation(s)
- Jesús Ruiz-Espigares
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| | - Daniel Nieto
- Photonics4life Research Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, 15705, Spain
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| |
Collapse
|
34
|
Wang W, Yang X, Li C, Li Y, Wang H, Han X. Immunogenic Cell Death (ICD) of Murine H22 Cells Induced by Lentinan. Nutr Cancer 2021; 74:640-649. [PMID: 33715541 DOI: 10.1080/01635581.2021.1897632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lentinan can lead to apoptosis of tumor cells and improve immune function. However, limited research focused on the immunogenic death regulation mechanism of lentinan on mouse H22 cells. The study aimed to explore the effect of Lentinan on the expression of immunogenic death-related proteins in mice H22 cells. MTT method was used to detect and evaluate the effect of 200-1000 μg/mL lentinan on the survival rate of H22 cells after 24 h, 48 h, and 72 h, respectively. Flow cytometry was employed to collect the apoptotic rate of lentinan at different concentrations (200-800μg/mL) on H22 cells for 48 h, and obtain the apoptotic rate of 600 μg/mL lentinan at different times (12-72 h). The effect of Lentinan on the expression of H22 Immunogenic Cell Death proteins was analyzed by ELISA and HPLC-MS afterward. Results suggest that lentinan cytotoxic and pro-apoptotic have a concentration-dependent manner with the H22 cells. Moreover, the rate of apoptosis increased significantly (P < 0.05) in 24 h. Lentinan can induce the expression of Calreticulin(CRT), High mobility protein 1(HMGB1), ATP and Heat shock protein 70 (HSP70) .Therefore, the antitumor effect of lentinan may be related to the regulation of immunogenic death-related protein expression, which was beneficial to the future development of liver cancer vaccines.
Collapse
Affiliation(s)
- Wen Wang
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xin Yang
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Chong Li
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yandong Li
- Laboratory of Veterinary Drug Residues, Hebei Institute of Veterinary Drugs Control, Shijiazhuang, Hebei provience, PR China
| | - Haibo Wang
- Weifang Xiashan Weitai Biotechnology Co., LTD, Weifang, Shandong Province, PR China
| | - Xue Han
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
35
|
Bonnet J, Rigal L, Mondesert O, Morin R, Corsaut G, Vigneau M, Ducommun B, Lobjois V. Mitotic arrest affects clustering of tumor cells. Cell Div 2021; 16:2. [PMID: 33514388 PMCID: PMC7847029 DOI: 10.1186/s13008-021-00070-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background Cancer cell aggregation is a key process involved in the formation of tumor cell clusters. It has recently been shown that clusters of circulating tumor cells (CTCs) have an increased metastatic potential compared to isolated circulating tumor cells. Several widely used chemotherapeutic agents that target the cytoskeleton microtubules and cause cell cycle arrest at mitosis have been reported to modulate CTC number or the size of CTC clusters. Results In this study, we investigated in vitro the impact of mitotic arrest on the ability of breast tumor cells to form clusters. By using live imaging and quantitative image analysis, we found that MCF-7 cancer cell aggregation is compromised upon incubation with paclitaxel or vinorelbine, two chemotherapeutic drugs that target microtubules. In line with these results, we observed that MCF-7 breast cancer cells experimentally synchronized and blocked in metaphase aggregated poorly and formed loose clusters. To monitor clustering at the single-cell scale, we next developed and validated an in vitro assay based on live video-microscopy and custom-designed micro-devices. The study of cluster formation from MCF-7 cells that express the fluorescent marker LifeAct-mCherry using this new assay allowed showing that substrate anchorage-independent clustering of MCF-7 cells was associated with the formation of actin-dependent highly dynamic cell protrusions. Metaphase-synchronized and blocked cells did not display such protrusions, and formed very loose clusters that failed to compact. Conclusions Altogether, our results suggest that mitotic arrest induced by microtubule-targeting anticancer drugs prevents cancer cell clustering and therefore, could reduce the metastatic potential of circulating tumor cells.
Collapse
Affiliation(s)
- Julia Bonnet
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France
| | - Lise Rigal
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France
| | - Odile Mondesert
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France
| | | | - Gaëlle Corsaut
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France
| | - Mathieu Vigneau
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France
| | - Bernard Ducommun
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France.,CHU de Toulouse, Toulouse, France
| | - Valérie Lobjois
- Université de Toulouse, ITAV, CNRS, ITAV-USR3505, 1 Place Pierre Potier, Toulouse Cedex 1, 31106, France.
| |
Collapse
|
36
|
Levi M, Salaroli R, Parenti F, De Maria R, Zannoni A, Bernardini C, Gola C, Brocco A, Marangio A, Benazzi C, Muscatello LV, Brunetti B, Forni M, Sarli G. Doxorubicin treatment modulates chemoresistance and affects the cell cycle in two canine mammary tumour cell lines. BMC Vet Res 2021; 17:30. [PMID: 33461558 PMCID: PMC7814552 DOI: 10.1186/s12917-020-02709-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Doxorubicin (DOX) is widely used in both human and veterinary oncology although the onset of multidrug resistance (MDR) in neoplastic cells often leads to chemotherapy failure. Better understanding of the cellular mechanisms that circumvent chemotherapy efficacy is paramount. The aim of this study was to investigate the response of two canine mammary tumour cell lines, CIPp from a primary tumour and CIPm, from its lymph node metastasis, to exposure to EC50(20h) DOX at 12, 24 and 48 h of treatment. We assessed the uptake and subcellular distribution of DOX, the expression and function of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP), two important MDR mediators. To better understand this phenomenon the effects of DOX on the cell cycle and Ki67 cell proliferation index and the expression of p53 and telomerase reverse transcriptase (TERT) were also evaluated by immunocytochemistry (ICC). RESULTS Both cell lines were able to uptake DOX within the nucleus at 3 h treatment while at 48 h DOX was absent from the intracellular compartment (assessed by fluorescence microscope) in all the surviving cells. CIPm, originated from the metastatic tumour, were more efficient in extruding P-gp substrates. By ICC and qRT-PCR an overall increase in both P-gp and BCRP were observed at 48 h of EC50(20h) DOX treatment in both cell lines and were associated with a striking increase in the percentage of p53 and TERT expressing cells by ICC. The cell proliferation fraction was decreased at 48 h in both cell lines and cell cycle analysis showed a DOX-induced arrest in the S phase for CIPp, while CIPm had an increase in cellular death without arrest. Both cells lines were therefore composed by a fraction of cells sensible to DOX that underwent apoptosis/necrosis. CONCLUSIONS DOX administration results in interlinked modifications in the cellular population including a substantial effect on the cell cycle, in particular arrest in the S phase for CIPp and the selection of a subpopulation of neoplastic cells bearing MDR phenotype characterized by P-gp and BCRP expression, TERT activation, p53 accumulation and decrease in the proliferating fraction. Important information is given for understanding the dynamic and mechanisms of the onset of drug resistance in a neoplastic cell population.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dogs
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Mammary Neoplasms, Animal
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
Collapse
Affiliation(s)
- Michela Levi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Federico Parenti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Cecilia Gola
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Brocco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Asia Marangio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Cinzia Benazzi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy.
| |
Collapse
|
37
|
Wang H, Guo S, Kim SJ, Shao F, Ho JWK, Wong KU, Miao Z, Hao D, Zhao M, Xu J, Zeng J, Wong KH, Di L, Wong AHH, Xu X, Deng CX. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Am J Cancer Res 2021; 11:2442-2459. [PMID: 33500735 PMCID: PMC7797698 DOI: 10.7150/thno.46460] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer growth is usually accompanied by metastasis which kills most cancer patients. Here we aim to study the effect of cisplatin at different doses on breast cancer growth and metastasis. Methods: We used cisplatin to treat breast cancer cells, then detected the migration of cells and the changes of epithelial-mesenchymal transition (EMT) markers by migration assay, Western blot, and immunofluorescent staining. Next, we analyzed the changes of RNA expression of genes by RNA-seq and confirmed the binding of activating transcription factor 3 (ATF3) to cytoskeleton related genes by ChIP-seq. Thereafter, we combined cisplatin and paclitaxel in a neoadjuvant setting to treat xenograft mouse models. Furthermore, we analyzed the association of disease prognosis with cytoskeletal genes and ATF3 by clinical data analysis. Results: When administered at a higher dose (6 mg/kg), cisplatin inhibits both cancer growth and metastasis, yet with strong side effects, whereas a lower dose (2 mg/kg) cisplatin blocks cancer metastasis without obvious killing effects. Cisplatin inhibits cancer metastasis through blocking early steps of EMT. It antagonizes transforming growth factor beta (TGFβ) signaling through suppressing transcription of many genes involved in cytoskeleton reorganization and filopodia formation which occur early in EMT and are responsible for cancer metastasis. Mechanistically, TGFβ and fibronectin-1 (FN1) constitute a positive reciprocal regulation loop that is critical for activating TGFβ/SMAD3 signaling, which is repressed by cisplatin induced expression of ATF3. Furthermore, neoadjuvant administration of cisplatin at 2 mg/kg in conjunction with paclitaxel inhibits cancer growth and blocks metastasis without causing obvious side effects by inhibiting colonization of cancer cells in the target organs. Conclusion: Thus, cisplatin prevents breast cancer metastasis through blocking early EMT, and the combination of cisplatin and paclitaxel represents a promising therapy for killing breast cancer and blocking tumor metastasis.
Collapse
|
38
|
Roda E, Luca FD, Locatelli CA, Ratto D, Di Iorio C, Savino E, Bottone MG, Rossi P. From a Medicinal Mushroom Blend a Direct Anticancer Effect on Triple-Negative Breast Cancer: A Preclinical Study on Lung Metastases. Molecules 2020; 25:molecules25225400. [PMID: 33218180 PMCID: PMC7699227 DOI: 10.3390/molecules25225400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/25/2023] Open
Abstract
Bioactive metabolites isolated from medicinal mushrooms (MM) used as supportive treatment in conventional oncology have recently gained interest. Acting as anticancer agents, they interfere with tumor cells and microenvironment (TME), disturbing cancer development/progression. Nonetheless, their action mechanisms still need to be elucidated. Recently, using a 4T1 triple-negative mouse BC model, we demonstrated that supplementation with Micotherapy U-Care, a MM blend, produced a striking reduction of lung metastases density/number, paralleled by decreased inflammation and oxidative stress both in TME and metastases, together with QoL amelioration. We hypothesized that these effects could be due to either a direct anticancer effect and/or to a secondary/indirect impact of Micotherapy U-Care on systemic inflammation/immunomodulation. To address this question, we presently focused on apoptosis/proliferation, investigating specific molecules, i.e., PARP1, p53, BAX, Bcl2, and PCNA, whose critical role in BC is well recognized. We revealed that Micotherapy U-Care is effective to influence balance between cell death and proliferation, which appeared strictly interconnected and inversely related (p53/Bax vs. Bcl2/PARP1/PCNA expression trends). MM blend displayed a direct effect, with different efficacy extent on cancer cells and TME, forcing tumor cells to apoptosis. Yet again, this study supports the potential of MM extracts, as adjuvant supplement in the TNBC management.
Collapse
Affiliation(s)
- Elisa Roda
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (D.R.); (C.D.I.); (M.G.B.)
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
- Correspondence: (E.R.); (P.R.); Tel.: +39-0382-5924-14 (E.R.); +39-0382-8960-76 (P.R.)
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (D.R.); (C.D.I.); (M.G.B.)
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (D.R.); (C.D.I.); (M.G.B.)
| | - Carmine Di Iorio
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (D.R.); (C.D.I.); (M.G.B.)
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy;
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (D.R.); (C.D.I.); (M.G.B.)
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (D.R.); (C.D.I.); (M.G.B.)
- Correspondence: (E.R.); (P.R.); Tel.: +39-0382-5924-14 (E.R.); +39-0382-8960-76 (P.R.)
| |
Collapse
|
39
|
Gengenbacher N, Singhal M, Mogler C, Hai L, Milde L, Pari AAA, Besemfelder E, Fricke C, Baumann D, Gehrs S, Utikal J, Felcht M, Hu J, Schlesner M, Offringa R, Chintharlapalli SR, Augustin HG. Timed Ang2-Targeted Therapy Identifies the Angiopoietin-Tie Pathway as Key Regulator of Fatal Lymphogenous Metastasis. Cancer Discov 2020; 11:424-445. [PMID: 33106316 DOI: 10.1158/2159-8290.cd-20-0122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/13/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
Recent clinical and preclinical advances have highlighted the existence of a previously hypothesized lymphogenous route of metastasis. However, due to a lack of suitable preclinical modeling tools, its contribution to long-term disease outcome and relevance for therapy remain controversial. Here, we established a genetically engineered mouse model (GEMM) fragment-based tumor model uniquely sustaining a functional network of intratumoral lymphatics that facilitates seeding of fatal peripheral metastases. Multiregimen survival studies and correlative patient data identified primary tumor-derived Angiopoietin-2 (Ang2) as a potent therapeutic target to restrict lymphogenous tumor cell dissemination. Mechanistically, tumor-associated lymphatic endothelial cells (EC), in contrast to blood vascular EC, were found to be critically addicted to the Angiopoietin-Tie pathway. Genetic manipulation experiments in combination with single-cell mapping revealed agonistically acting Ang2-Tie2 signaling as key regulator of lymphatic maintenance. Correspondingly, acute presurgical Ang2 neutralization was sufficient to prolong survival by regressing established intratumoral lymphatics, hence identifying a therapeutic regimen that warrants further clinical evaluation. SIGNIFICANCE: Exploiting multiple mouse tumor models including a unique GEMM-derived allograft system in combination with preclinical therapy designs closely matching the human situation, this study provides fundamental insight into the biology of tumor-associated lymphatic EC and defines an innovative presurgical therapeutic window of migrastatic Ang2 neutralization to restrict lymphogenous metastasis.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Munich, Germany
| | - Ling Hai
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Milde
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Claudine Fricke
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Daniel Baumann
- Faculty of Biosciences, Heidelberg University, Mannheim, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Moritz Felcht
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Matthias Schlesner
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany. .,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
40
|
Renz M. In invasion assays, the breast cancer cell nucleus leads the way. BMC Res Notes 2020; 13:480. [PMID: 33046121 PMCID: PMC7552489 DOI: 10.1186/s13104-020-05314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 11/11/2022] Open
Abstract
Objective Cancer cell metastasis determines disease prognosis. During cancer cell metastasis, the cancer cell and the cancer cell nucleus have to undergo extreme shape changes. To monitor shape changes of cancer cells and cancer cell nuclei and the positioning of the cancer cell nucleus during cancer cell invasion, a customized invasion assay with 8-μm pores and reconstituted basal membrane was imaged using fluorescence live-cell microscopy. Results The observed cells changed their shape from a distinct fibroblast-like spindle shape to an amoeboid shape without polarization immediately after the passage through an 8-μm pore of the invasion assay. During the process of invasion, the cancer cell centered the cancer cell nucleus over the 8-μm pore, and cancer cell nucleus and adjacent cytoplasmic areas moved first through such a pore. Seemingly testing if the largest and least deformable organelle may fit, the cancer cell nucleus led the way through the porous membrane of the invasion assay.
Collapse
Affiliation(s)
- Malte Renz
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, H302, Stanford, CA, 94305, USA.
| |
Collapse
|
41
|
Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer. Molecules 2020; 25:molecules25143146. [PMID: 32660101 PMCID: PMC7397003 DOI: 10.3390/molecules25143146] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), an active compound of green tea and its role in diseases cure and prevention has been proven. Its role in diseases management can be attributed to its antioxidant and anti-inflammatory properties. The anti-cancer role of this green tea compound has been confirmed in various types of cancer and is still being under explored. EGCG has been proven to possess a chemopreventive effect through inhibition of carcinogenesis process such as initiation, promotion, and progression. In addition, this catechin has proven its role in cancer management through modulating various cell signaling pathways such as regulating proliferation, apoptosis, angiogenesis and killing of various types of cancer cells. The additive or synergistic effect of epigallocatechin with chemopreventive agents has been verified as it reduces the toxicities and enhances the anti-cancerous effects. Despite its effectiveness and safety, the implications of EGCG in cancer prevention is certainly still discussed due to a poor bioavailability. Several studies have shown the ability to overcome poor bioavailability through nanotechnology-based strategies such as encapsulation, liposome, micelles, nanoparticles and various other formulation. In this review, we encapsulate therapeutic implication of EGCG in cancer management and the mechanisms of action are discussed with an emphasis on human clinical trials.
Collapse
|
42
|
Pierce CJ, Simmons JL, Broit N, Karunarathne D, Ng MF, Boyle GM. BRN2 expression increases anoikis resistance in melanoma. Oncogenesis 2020; 9:64. [PMID: 32632141 PMCID: PMC7338542 DOI: 10.1038/s41389-020-00247-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022] Open
Abstract
Melanoma tumors are highly heterogeneous, comprising of many cell populations that vary in their potential for growth and invasion. Differential transcription factor expression contributes to these phenotypic traits. BRN2, a member of the POU domain family of transcription factors is thought to play important roles in melanoma invasion and metastasis. However, the function of BRN2 during the metastatic process of melanoma remains largely unknown. We therefore investigated the effect of BRN2 expression in melanoma cells with no or low constitutive expression using a doxycycline-inducible system. Induction of BRN2 expression led to reduced proliferation and partial resistance to an inhibitor of mutated BRAF. Whole-genome profiling analysis revealed novel targets and signaling pathway changes related to prevention of cell death induced by detachment from the extracellular matrix, known as anoikis resistance. Further investigation confirmed increased survival of BRN2-expressing cell lines in non-adherent conditions. Functionally, expression of BRN2 promoted induction of c-MET levels as well as increased phosphorylation of STAT3. Treatment with crizotinib, a c-MET inhibitor, decreased cellular viability of BRN2-expressing cells under non-adherent conditions to death by anoikis. Alternative inhibitors of c-MET showed similar results. These results highlight the importance of a largely overlooked transcription factor in the progression and metastasis of melanoma, and may suggest a strategy to target BRN2-expressing cells resistant to therapy and cell death by anoikis.
Collapse
Affiliation(s)
- Carly J Pierce
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jacinta L Simmons
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Natasa Broit
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Deshapriya Karunarathne
- Molecular Immunology Group, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mei Fong Ng
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
43
|
Kähkönen TE, Halleen JM, Bernoulli J. Immunotherapies and Metastatic Cancers: Understanding Utility and Predictivity of Human Immune Cell Engrafted Mice in Preclinical Drug Development. Cancers (Basel) 2020; 12:cancers12061615. [PMID: 32570871 PMCID: PMC7352707 DOI: 10.3390/cancers12061615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Metastases cause high mortality in several cancers and immunotherapies are expected to be effective in the prevention and treatment of metastatic disease. However, only a minority of patients benefit from immunotherapies. This creates a need for novel therapies that are efficacious regardless of the cancer types and metastatic environments they are growing in. Preclinical immuno-oncology models for studying metastases have long been limited to syngeneic or carcinogenesis-inducible models that have murine cancer and immune cells. However, the translational power of these models has been questioned. Interactions between tumor and immune cells are often species-specific and regulated by different cytokines in mice and humans. For increased translational power, mice engrafted with functional parts of human immune system have been developed. These humanized mice are utilized to advance understanding the role of immune cells in the metastatic process, but increasingly also to study the efficacy and safety of novel immunotherapies. From these aspects, this review will discuss the role of immune cells in the metastatic process and the utility of humanized mouse models in immuno-oncology research for metastatic cancers, covering several models from the perspective of efficacy and safety of immunotherapies.
Collapse
Affiliation(s)
- Tiina E. Kähkönen
- OncoBone Ltd., Kalimenojankuja 3 C 4, FI-90810 Kiviniemi, Finland;
- Correspondence:
| | - Jussi M. Halleen
- OncoBone Ltd., Kalimenojankuja 3 C 4, FI-90810 Kiviniemi, Finland;
| | - Jenni Bernoulli
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland;
| |
Collapse
|
44
|
Flavonoids in Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12061498. [PMID: 32521759 PMCID: PMC7352928 DOI: 10.3390/cancers12061498] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metastasis represents a serious complication in the treatment of cancer. Flavonoids are plant secondary metabolites exerting various health beneficiary effects. The effects of flavonoids against cancer are associated not only with early stages of the cancer process, but also with cancer progression and spread into distant sites. Flavonoids showed potent anti-cancer effects against various cancer models in vitro and in vivo, mediated via regulation of key signaling pathways involved in the migration and invasion of cancer cells and metastatic progression, including key regulators of epithelial-mesenchymal transition or regulatory molecules such as MMPs, uPA/uPAR, TGF-β and other contributors of the complex process of metastatic spread. Moreover, flavonoids modulated also the expression of genes associated with the progression of cancer and improved inflammatory status, a part of the complex process involved in the development of metastasis. Flavonoids also documented clear potential to improve the anti-cancer effectiveness of conventional chemotherapeutic agents. Most importantly, flavonoids represent environmentally-friendly and cost-effective substances; moreover, a wide spectrum of different flavonoids demonstrated safety and minimal side effects during long-termed administration. In addition, the bioavailability of flavonoids can be improved by their conjugation with metal ions or structural modifications by radiation. In conclusion, anti-cancer effects of flavonoids, targeting all phases of carcinogenesis including metastatic progression, should be implemented into clinical cancer research in order to strengthen their potential use in the future targeted prevention and therapy of cancer in high-risk individuals or patients with aggressive cancer disease with metastatic potential.
Collapse
|
45
|
Gerlitz G. The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol 2020; 8:394. [PMID: 32528959 PMCID: PMC7266953 DOI: 10.3389/fcell.2020.00394] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Cell migration is a key process in health and disease. In the last decade an increasing attention is given to chromatin organization in migrating cells. In various types of cells induction of migration leads to a global increase in heterochromatin levels. Heterochromatin is required for optimal cell migration capabilities, since various interventions with heterochromatin formation impeded the migration rate of numerous cell types. Heterochromatin supports the migration process by affecting both the mechanical properties of the nucleus as well as the genetic processes taking place within it. Increased heterochromatin levels elevate nuclear rigidity in a manner that allows faster cell migration in 3D environments. Condensed chromatin and a more rigid nucleus may increase nuclear durability to shear stress and prevent DNA damage during the migration process. In addition, heterochromatin reorganization in migrating cells is important for induction of migration-specific transcriptional plan together with inhibition of many other unnecessary transcriptional changes. Thus, chromatin organization appears to have a key role in the cellular migration process.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Department of Molecular Biology and Ariel Center for Applied Cancer Research, Faculty of Life Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
46
|
Abstract
OBJECTIVE The majority of patients with colorectal cancer are diagnosed with locally advanced and/or disseminated disease, and treatment options include surgery in combination with cytotoxic chemotherapy regimens, biologics, and/or radiotherapy. Thus, colorectal cancer remains a heavy burden on society and health care systems.Mounting evidence show that driver gene mutations play only part of the role in carcinogenesis. Epigenetics are strongly implicated in initiation and progression of colorectal cancer along with major players such as intestinal microbiotic dysbiosis and chronic mucosal inflammation.To assess phenotypic changes in proteins and gene expression, multigene expression signatures based on sequencing techniques have been developed to hopefully improve predictors of the tumor profile, immune response, and therapeutic outcomes. Our objective was to review current advances in the field and to update surgeons and academics on driver gene mutations and epigenetics in colorectal cancer. BACKGROUND AND METHODS This is a narrative review studying relevant research published in the PUBMED database from 2012-2018. RESULTS AND CONCLUSION Increased understanding of the molecular biology will improve options to characterize colorectal cancer with regard to mutations and molecular pathways, including microsatellite instability, epigenetics, microbiota, and microenvironment. Research will inevitably improve risk group stratification and targeted treatment approaches.Epigenetic profiling and epigenetic modulating drugs will increase risk stratification, increase accessibility for DNA targeting chemotherapeutics and reduce cytotoxic drug resistance.New generation antibiotics such as biofilm inhibitors and quorum sensing inhibitors are being developed to target the carcinogenetic impact of colonic dysbiosis and inflammation.
Collapse
|
47
|
Shinde A, Paez JS, Libring S, Hopkins K, Solorio L, Wendt MK. Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche. Oncogenesis 2020; 9:16. [PMID: 32054828 PMCID: PMC7018754 DOI: 10.1038/s41389-020-0204-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 11/12/2022] Open
Abstract
The ability of breast cancer cells to interconvert between epithelial and mesenchymal states contributes to their metastatic potential. As opposed to cell autonomous effects, the impact of epithelial–mesenchymal plasticity (EMP) on primary and metastatic tumor microenvironments remains poorly characterized. Herein we utilize global gene expression analyses to characterize a metastatic model of EMP as compared to their non-metastatic counterparts. Using this approach, we demonstrate that upregulation of the extracellular matrix crosslinking enzyme tissue transglutaminase-2 (TG2) is part of a novel gene signature that only emerges in metastatic cells that have undergone induction and reversion of epithelial–mesenchymal transition (EMT). Consistent with our model system, patient survival is diminished when primary tumors demonstrate enhanced levels of TG2 in conjunction with its substrate, fibronectin. Targeted depletion of TG2 inhibits metastasis, while overexpression of TG2 is sufficient to enhance this process. In addition to being present within cells, we demonstrate a robust increase in the amount of TG2 and crosslinked fibronectin present within extracellular vesicle (EV) fractions derived from metastatic breast cancer cells. Confocal microscopy of these EVs suggests that FN undergoes fibrillogenesis on their surface via a TG2 and Tensin1-dependent process. Upon in vivo administration, the ability of tumor-derived EVs to induce metastatic niche formation and enhance subsequent pulmonary tumor growth requires the presence and activity of TG2. Finally, we develop a novel 3D model of the metastatic niche to demonstrate that conditioning of pulmonary fibroblasts via pretreatment with tumor-derived EVs promotes subsequent growth of breast cancer cells in a TG2-dependent fashion. Overall, our studies illustrate a novel mechanism through which EMP contributes to metastatic niche development and distant metastasis via tumor-derived EVs containing aberrant levels of TG2 and fibrillar FN.
Collapse
Affiliation(s)
- Aparna Shinde
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Juan Sebastian Paez
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sarah Libring
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Kelsey Hopkins
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
48
|
Chitty JL, Skhinas JN, Filipe EC, Wang S, Cupello CR, Grant RD, Yam M, Papanicolaou M, Major G, Zaratzian A, Da Silva AM, Tayao M, Vennin C, Timpson P, Madsen CD, Cox TR. The Mini-Organo: A rapid high-throughput 3D coculture organotypic assay for oncology screening and drug development. Cancer Rep (Hoboken) 2020; 3:e1209. [PMID: 32671954 PMCID: PMC7941459 DOI: 10.1002/cnr2.1209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. AIM The development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development. METHODS AND RESULTS Here, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. CONCLUSIONS The Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.
Collapse
Affiliation(s)
- Jessica L. Chitty
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Joanna N. Skhinas
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Elysse C. Filipe
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Shan Wang
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Carmen Rodriguez Cupello
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Rhiannon D. Grant
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michelle Yam
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- School of Life SciencesUniversity of Technology SydneySydneyAustralia
| | - Gretel Major
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Andrew M. Da Silva
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michael Tayao
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Claire Vennin
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- Molecular PathologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Paul Timpson
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Chris D. Madsen
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Thomas R. Cox
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| |
Collapse
|
49
|
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL. Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front Oncol 2020; 9:1482. [PMID: 32010611 PMCID: PMC6978720 DOI: 10.3389/fonc.2019.01482] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.
Collapse
Affiliation(s)
- Zehra Elgundi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Gretel Major
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Cacho-Díaz B, García-Botello DR, Wegman-Ostrosky T, Reyes-Soto G, Ortiz-Sánchez E, Herrera-Montalvo LA. Tumor microenvironment differences between primary tumor and brain metastases. J Transl Med 2020; 18:1. [PMID: 31900168 PMCID: PMC6941297 DOI: 10.1186/s12967-019-02189-8] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The present review aimed to discuss contemporary scientific literature involving differences between the tumor microenvironment (TME) in melanoma, lung cancer, and breast cancer in their primary site and TME in brain metastases (BM). TME plays a fundamental role in the behavior of cancer. In the process of carcinogenesis, cells such as fibroblasts, macrophages, endothelial cells, natural killer cells, and other cells can perpetuate and progress carcinogenesis via the secretion of molecules. Oxygen concentration, growth factors, and receptors in TME initiate angiogenesis and are examples of the importance of microenvironmental conditions in the performance of neoplastic cells. The most frequent malignant brain tumors are metastatic in origin and primarily originate from lung cancer, breast cancer, and melanoma. Metastatic cancer cells have to adhere to and penetrate the blood-brain barrier (BBB). After traversing BBB, these cells have to survive by producing various cytokines, chemokines, and mediators to modify their new TME. The microenvironment of these metastases is currently being studied owing to the discovery of new therapeutic targets. In these three types of tumors, treatment is more effective in the primary tumor than in BM due to several factors, including BBB. Understanding the differences in the characteristics of the microenvironment surrounding the primary tumor and their respective metastasis might help improve strategies to comprehend cancer.
Collapse
Affiliation(s)
- Bernardo Cacho-Díaz
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico.
| | - Donovan R García-Botello
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Talia Wegman-Ostrosky
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Gervith Reyes-Soto
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Elizabeth Ortiz-Sánchez
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Luis Alonso Herrera-Montalvo
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico.
| |
Collapse
|