1
|
Yang L, Li P, Huang X, Wang C, Zeng Y, Wang J, Yao X, Meng J. Effects of Combined Transcriptome and Metabolome Analysis Training on Athletic Performance of 2-Year-Old Trot-Type Yili Horses. Genes (Basel) 2025; 16:197. [PMID: 40004526 PMCID: PMC11855102 DOI: 10.3390/genes16020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVES Training is essential for enhancing equine athletic performance, but the genetic mechanisms that regulate athletic performance are unknown. Therefore, this paper aims to identify candidate genes and metabolic pathways for the effects of training on equine athletic performance through multi-omics analyses. METHODS The experiment selected 12 untrained trot-type Yili horses, which underwent a 12-week professional training program. Blood samples were collected at rest before training (BT) and after training (AT). Based on their race performance, whole blood and serum samples from 4 horses were chosen for transcriptomic and metabolomic analyses. RESULTS The race performance of the horses is dramatically improved in the AT period compared to the BT (p < 0.01) period. The transcriptome analysis identified a total of 57 differentially expressed genes, which were significantly enriched in pathways related to circadian entrainment, steroid hormone biosynthesis, chemokine signaling, and cholinergic synapses (p < 0.05). Additionally, metabolomic analysis revealed 121 differentially identified metabolites, primarily enriched in metabolic pathways such as histidine metabolism, purine metabolism, and the PI3K-Akt signaling pathway. The integration of transcriptomic and metabolomic analyses uncovered five shared pathways, and further combined pathway analyses identified eight differentially expressed genes that correlate with 19 differentially identified metabolites. CONCLUSIONS The current findings will contribute to establishing a theoretical framework for investigating the molecular mechanisms of genes associated with the impact of training on equine athletic performance. Additionally, these results will serve as a foundation for enhancing the athletic capabilities of trot-type Yili horses.
Collapse
Affiliation(s)
- Liping Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
| | - Pengcheng Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
| | - Xinxin Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
| | - Chuankun Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Xinjiang Agricultural University, Urumqi 830052, China
- Horse Industry Research Institute, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Xinjiang Agricultural University, Urumqi 830052, China
- Horse Industry Research Institute, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Xinjiang Agricultural University, Urumqi 830052, China
- Horse Industry Research Institute, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Xinjiang Agricultural University, Urumqi 830052, China
- Horse Industry Research Institute, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Ibrahim MFG, Ali FF, Ali SFES, Shaker ES, Mahmoud HI, Abdellatif FEM, Mokhemer SA. Neuroprotective effect of red dragon fruit extract ameliorates oxidative stress and inflammation in D-galactose-induced aging rat model: biochemical, histological and immunohistochemical study. J Mol Histol 2024; 56:51. [PMID: 39707017 DOI: 10.1007/s10735-024-10316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/17/2024] [Indexed: 12/23/2024]
Abstract
Aging is a worldwide socioeconomic burden. Cerebellar aging is an enigma contributing to many behavioral aging disorders, hence is its hindering by prophylactic measurements is a crucial geriatric research target. Red dragon fruit (RDF) is a tropical fruit with antioxidant, anti-inflammatory and anti-apoptotic properties. This study aimed to determine the protective effect of RDF extract against cerebellar aging. Thirty-two male albino rats were randomly allocated into 4 groups: Control, RDF, aged and RDF-aged groups. Aged group revealed structural distortion affecting cerebellar layers including a significant (P < 0.05) decrease in Purkinje cells number and decrease in granular cell layer thickness by comparison to the control and RDF groups. Additionally, distorted capillary endothelium, and defective myelination were noticed. Interestingly, cerebellar active caspase-3, iNOS, MDA and 3-NT and serum TNF-α levels significantly increased with aging by comparison to the control and RDF groups (all P < 0.05). Biochemical analysis revealed a significant (P < 0.05) decrease in cerebellar SOD and serum GSH levels in aged rats. RDF extract remarkably ameliorated most of the neuronal degenerative changes with a significant (P < 0.05) increase in Purkinje cells numbers, and granular cell layer thickness by comparison to the aged group. Furthermore, it resulted in a significant (P < 0.05) decrease in cerebellum expression of active caspase-3, iNOS, MDA, 3-NT, and serum TNF-α levels associated with a significant (P < 0.05) increase in cerebellar SOD and serum GSH levels by comparison to the aged group. To the best of our knowledge this is the first study showing a neuroprotective effect for RDF against cerebellar aging. RDF might be effective in attenuation of age-induced cerebellar degenerative changes through its anti-apoptotic, antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Fatma F Ali
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt
- Biochemistry, Molecular Biology and Physiology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | | | - Emad S Shaker
- Agric. Chemistry Department, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Hemdan I Mahmoud
- Agric. Chemistry Department, Faculty of Agriculture, Minia University, Minia, Egypt
| | | | - Sahar A Mokhemer
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| |
Collapse
|
3
|
Rusip G, Ilyas S, Lister INE, Ginting CN, Mukti I. The effect of ingestion of red dragon fruit extract on levels of malondialdehyde and superoxide dismutase after strenuous exercise in rats (Rattus norvegicus). F1000Res 2022; 10:1061. [PMID: 35966961 PMCID: PMC9345267 DOI: 10.12688/f1000research.54254.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Prolonged activation of skeletal muscles causes a decrease in the production of fatigue. Exercise with strenuous intensity causes an increase in Reactive Oxygen Species (ROS). An increase in free radicals causes oxidative stress resulting in damage to cell function to mitochondrial dysfunction, and fatigue. This study aimed to determine the antioxidant potential of red dragon fruit (RDF) to delay fatigue due to oxidative stress, which improves cell function in mitochondria. Methods: 25 male rats
(Rattus norvegicus) aged three months were divided into five groups: Group K1 was N.A. (No Activity) but drinking and eating; Group K2 performed strenuous exercise without RDF treatment; Groups 3, 4, and 5 (P1, P2 and P3, respectively) performed strenuous exercise and were treated with 75 mg kg
-1.bw, 150 mg kg
-1.bw, and 300 mg kg
-1.bw of RDF extract, respectively. The exercise for the rats involved intense swimming for 20 minutes a day three time a week for fouweeks. Malondialdehyde (MDA) dan SOD was measured with the ELISA and histopathology for muscle soleus and lung tissue. Results: Strenuous exercise followed by RDF extract ingestion was compared for fatigue in terms of duration and time; before (24.55±1.38 minute) and after (95.31±7.82 minute) and led to a significant difference of 39% (p<0.01). The study also compared MDA before and after RDF extract ingestion in the K2 vs. the P1 group (p<0.05). At the same time, P2 differed more significantly (p<0.01). This indicated a spread of free radicals and featured histopathological damage of muscle cells. However, ingestion of RDF extract leads to improvement of soleus muscle cells; thus, repairs cell function, delaying fatigue. Conclusion: This study confirmed that strenuous exercise, which causes an increase in ROS, intensifies free radicals with RDF extract ingestion and declines oxidative stress, repairing cell function and delaying fatigue.
Collapse
Affiliation(s)
- Gusbakti Rusip
- Department of Physiology, Faculty of Medicine, University Prima Indonesia, Medan, Sumatra Utara, 20118, Indonesia
| | - Syafrudin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, University Sumatera Utara, Medan, Sumatra Utara, 20132, Indonesia
| | - I. Nyoman Ehrich Lister
- Department of Physiology, Faculty of Medicine, University Prima Indonesia, Medan, Sumatra Utara, 20118, Indonesia
| | | | - Indra Mukti
- Department of Surgery, Universitas Prima Indonesia, Medan, Sumatera Utara, Indonesia
| |
Collapse
|
4
|
Harahap NS, Diningrat DS, Siregar NS. Regular Exercise of Moderate Intensity and Lemon Peel Essential Oil as Immunomodulator during Covid-19. PHARMACOPHORE 2022. [DOI: 10.51847/gplgidmfkz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Rusip G, Ilyas S, Lister INE, Ginting CN, Mukti I. The effect of ingestion of red dragon fruit extract on levels of malondialdehyde and superoxide dismutase after strenuous exercise in rats ( Rattus norvegicus). F1000Res 2021; 10:1061. [PMID: 35966961 PMCID: PMC9345267 DOI: 10.12688/f1000research.54254.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 09/26/2023] Open
Abstract
Background: Prolonged activation of skeletal muscles causes a decrease in the production of fatigue. Exercise with strenuous intensity causes an increase in Reactive Oxygen Species (ROS). An increase in free radicals causes oxidative stress resulting in damage to cell function to mitochondrial dysfunction, and fatigue. This study aimed to determine the antioxidant potential of red dragon fruit (RDF) to delay fatigue due to oxidative stress, which improves cell function in mitochondria. Methods: 25 male rats (Rattus norvegicus) aged three months were divided into five groups: Group K1 was N.A. (No Activity) but drinking and eating; Group K2 performed strenuous exercise without RDF treatment; Groups 3, 4, and 5 (P1, P2 and P3, respectively) performed strenuous exercise and were treated with 75 mg kg -1.bw, 150 mg kg -1.bw, and 300 mg kg -1.bw of RDF extract, respectively. The exercise for the rats involved intense swimming for 20 minutes a day three time a week for fouweeks. Malondialdehyde (MDA) dan SOD was measured with the ELISA and histopathology for muscle soleus and lung tissue. Results: Strenuous exercise followed by RDF extract ingestion was compared for fatigue in terms of duration and time; before (24.55±1.38 minute) and after (95.31±7.82 minute) and led to a significant difference of 39% (p<0.01). The study also compared MDA before and after RDF extract ingestion in the K2 vs. the P1 group (p<0.05). At the same time, P2 differed more significantly (p<0.01). This indicated a spread of free radicals and featured histopathological damage of muscle cells. However, ingestion of RDF extract leads to improvement of soleus muscle cells; thus, repairs cell function, delaying fatigue. Conclusion: This study confirmed that strenuous exercise, which causes an increase in ROS, intensifies free radicals with RDF extract ingestion and declines oxidative stress, repairing cell function and delaying fatigue.
Collapse
Affiliation(s)
- Gusbakti Rusip
- Department of Physiology, Faculty of Medicine, University Prima Indonesia, Medan, Sumatra Utara, 20118, Indonesia
| | - Syafrudin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, University Sumatera Utara, Medan, Sumatra Utara, 20132, Indonesia
| | - I. Nyoman Ehrich Lister
- Department of Physiology, Faculty of Medicine, University Prima Indonesia, Medan, Sumatra Utara, 20118, Indonesia
| | | | - Indra Mukti
- Department of Surgery, Universitas Prima Indonesia, Medan, Sumatera Utara, Indonesia
| |
Collapse
|