1
|
Huang J, Wang X, Dong R, Liu X, Li H, Zhang T, Xu J, Liu C, Zhang Y, Hou S, Tang W, Lu T, Chen Y. Discovery of N-(4-(3-isopropyl-2-methyl-2 H-indazol-5-yl)pyrimidin-2-yl)-4-(4-methylpiperazin-1-yl)quinazolin-7-amine as a Novel, Potent, and Oral Cyclin-Dependent Kinase Inhibitor against Haematological Malignancies. J Med Chem 2021; 64:12548-12571. [PMID: 34415148 DOI: 10.1021/acs.jmedchem.1c00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hematologic malignancies (HM) start in blood forming tissue or in the cells of the immune system. Cyclin-dependent kinases (CDKs) regulate cell cycle progression, and some of them control cellular transcription. CDK inhibition can trigger apoptosis and could be particularly useful in hematological malignancies. Herein, we describe our efforts toward the discovery of a novel series of quinazoline derivatives as CDK inhibitors. Intensive structural modifications lead to the identification of compound 37d as the most active inhibitors of CDKs 1, 2, 4, 8 and 9 with balancing potency and selectivity against CDKs. Further biological studies revealed that compound 37d can arrest the cell cycle and induce apoptosis via activating PARP and caspase 3. More importantly, compound 37d showed good antitumor efficacy in multiple HM mice xenograft models with no obvious toxicity. These results indicated that CDK 1, 2, 4, 8, and 9 inhibitors could be potentially used to treat certain hematologic malignancies.
Collapse
Affiliation(s)
- Jianhang Huang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xinren Wang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Ruinan Dong
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xiaoyue Liu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tianyi Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Junyu Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Chenhe Liu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yanmin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shaohua Hou
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Weifang Tang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| |
Collapse
|