1
|
Drury RE, Camara S, Chelysheva I, Bibi S, Sanders K, Felle S, Emary K, Phillips D, Voysey M, Ferreira DM, Klenerman P, Gilbert SC, Lambe T, Pollard AJ, O'Connor D. Multi-omics analysis reveals COVID-19 vaccine induced attenuation of inflammatory responses during breakthrough disease. Nat Commun 2024; 15:3402. [PMID: 38649734 PMCID: PMC11035709 DOI: 10.1038/s41467-024-47463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The immune mechanisms mediating COVID-19 vaccine attenuation of COVID-19 remain undescribed. We conducted comprehensive analyses detailing immune responses to SARS-CoV-2 virus in blood post-vaccination with ChAdOx1 nCoV-19 or a placebo. Samples from randomised placebo-controlled trials (NCT04324606 and NCT04400838) were taken at baseline, onset of COVID-19-like symptoms, and 7 days later, confirming COVID-19 using nucleic amplification test (NAAT test) via real-time PCR (RT-PCR). Serum cytokines were measured with multiplexed immunoassays. The transcriptome was analysed with long, short and small RNA sequencing. We found attenuation of RNA inflammatory signatures in ChAdOx1 nCoV-19 compared with placebo vaccinees and reduced levels of serum proteins associated with COVID-19 severity. KREMEN1, a putative alternative SARS-CoV-2 receptor, was downregulated in placebo compared with ChAdOx1 nCoV-19 vaccinees. Vaccination ameliorates reductions in cell counts across leukocyte populations and platelets noted at COVID-19 onset, without inducing potentially deleterious Th2-skewed immune responses. Multi-omics integration links a global reduction in miRNA expression at COVID-19 onset to increased pro-inflammatory responses at the mRNA level. This study reveals insights into the role of COVID-19 vaccines in mitigating disease severity by abrogating pro-inflammatory responses associated with severe COVID-19, affirming vaccine-mediated benefit in breakthrough infection, and highlighting the importance of clinically relevant endpoints in vaccine evaluation.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Katherine Sanders
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Salle Felle
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Katherine Emary
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel Phillips
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
Solaguren-Beascoa M, Gámez-Valero A, Escaramís G, Herrero-Lorenzo M, Ortiz AM, Minguet C, Gonzalo R, Bravo MI, Costa M, Martí E. Phospho-RNA-Seq Highlights Specific Small RNA Profiles in Plasma Extracellular Vesicles. Int J Mol Sci 2023; 24:11653. [PMID: 37511412 PMCID: PMC10380198 DOI: 10.3390/ijms241411653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Small RNAs (sRNAs) are bioactive molecules that can be detected in biofluids, reflecting physiological and pathological states. In plasma, sRNAs are found within extracellular vesicles (EVs) and in extravesicular compartments, offering potential sources of highly sensitive biomarkers. Deep sequencing strategies to profile sRNAs favor the detection of microRNAs (miRNAs), the best-known class of sRNAs. Phospho-RNA-seq, through the enzymatic treatment of sRNAs with T4 polynucleotide kinase (T4-PNK), has been recently developed to increase the detection of thousands of previously inaccessible RNAs. In this study, we investigated the value of phospho-RNA-seq on both the EVs and extravesicular plasma subfractions. Phospho-RNA-seq increased the proportion of sRNAs used for alignment and highlighted the diversity of the sRNA transcriptome. Unsupervised clustering analysis using sRNA counts matrices correctly classified the EVs and extravesicular samples only in the T4-PNK treated samples, indicating that phospho-RNA-seq stresses the features of sRNAs in each plasma subfraction. Furthermore, T4-PNK treatment emphasized specific miRNA variants differing in the 5'-end (5'-isomiRs) and certain types of tRNA fragments in each plasma fraction. Phospho-RNA-seq increased the number of tissue-specific messenger RNA (mRNA) fragments in the EVs compared with the extravesicular fraction, suggesting that phospho-RNA-seq favors the discovery of tissue-specific sRNAs in EVs. Overall, the present data emphasizes the value of phospho-RNA-seq in uncovering RNA-based biomarkers in EVs.
Collapse
Affiliation(s)
- Maria Solaguren-Beascoa
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
| | - Ana Gámez-Valero
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| | - Georgia Escaramís
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| | - Marina Herrero-Lorenzo
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
| | - Ana M Ortiz
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | - Carla Minguet
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | - Ricardo Gonzalo
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | | | | | - Eulàlia Martí
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| |
Collapse
|
3
|
Dysregulation of Human Somatic piRNA Expression in Parkinson's Disease Subtypes and Stages. Int J Mol Sci 2022; 23:ijms23052469. [PMID: 35269612 PMCID: PMC8910154 DOI: 10.3390/ijms23052469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Piwi interacting RNAs (piRNAs) are small non-coding single-stranded RNA species 20–31 nucleotides in size generated from distinct loci. In germline tissues, piRNAs are amplified via a “ping-pong cycle” to produce secondary piRNAs, which act in transposon silencing. In contrast, the role of somatic-derived piRNAs remains obscure. Here, we investigated the identity and distribution of piRNAs in human somatic tissues to determine their function and potential role in Parkinson’s disease (PD). Human datasets were curated from the Gene Expression Omnibus (GEO) database and a workflow was developed to identify piRNAs, which revealed 902 somatic piRNAs of which 527 were expressed in the brain. These were mainly derived from chromosomes 1, 11, and 19 compared to the germline tissues, which were from 15 and 19. Approximately 20% of somatic piRNAs mapped to transposon 3′ untranslated regions (UTRs), but a large proportion were sensed to the transcript in contrast to germline piRNAs. Gene set enrichment analysis suggested that somatic piRNAs function in neurodegenerative disease. piRNAs undergo dysregulation in different PD subtypes (PD and Parkinson’s disease dementia (PDD)) and stages (premotor and motor). piR-has-92056, piR-hsa-150797, piR-hsa-347751, piR-hsa-1909905, piR-hsa-2476630, and piR-hsa-2834636 from blood small extracellular vesicles were identified as novel biomarkers for PD diagnosis using a sparse partial least square discriminant analysis (sPLS-DA) (accuracy: 92%, AUC = 0.89). This study highlights a role for piRNAs in PD and provides tools for novel biomarker development.
Collapse
|