1
|
Zhang L, Xu M, Zhang W, Zhu C, Cui Z, Fu H, Ma Y, Huang S, Cui J, Liang S, Huang L, Wang H. Three-dimensional genome landscape comprehensively reveals patterns of spatial gene regulation in papillary and anaplastic thyroid cancers: a study using representative cell lines for each cancer type. Cell Mol Biol Lett 2023; 28:1. [PMID: 36609218 PMCID: PMC9825046 DOI: 10.1186/s11658-022-00409-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Spatial chromatin structure is intricately linked with somatic aberrations, and somatic mutations of various cancer-related genes, termed co-mutations (CoMuts), occur in certain patterns during cancer initiation and progression. The functional mechanisms underlying these genetic events remain largely unclear in thyroid cancer (TC). With discrepant differentiation, papillary thyroid cancer (PTC) and anaplastic thyroid cancer (ATC) differ greatly in characteristics and prognosis. We aimed to reveal the spatial gene alterations and regulations between the two TC subtypes. METHODS We systematically investigated and compared the spatial co-mutations between ATC (8305C), PTC (BCPAP and TPC-1), and normal thyroid cells (Nthy-ori-3-1). We constructed a framework integrating whole-genome sequencing (WGS), high-throughput chromosome conformation capture (Hi-C), and transcriptome sequencing, to systematically detect the associations between the somatic co-mutations of cancer-related genes, structural variations (SVs), copy number variations (CNVs), and high-order chromatin conformation. RESULTS Spatial co-mutation hotspots were enriched around topologically associating domains (TADs) in TC. A common set of 227 boundaries were identified in both ATC and PTC, with significant overlaps between them. The spatial proximities of the co-mutated gene pairs in the two TC types were significantly greater than in the gene-level and overall backgrounds, and ATC cells had higher TAD contact frequency with CoMuts > 10 compared with PTC cells. Compared with normal thyroid cells, in ATC the number of the created novel three-dimensional chromatin structural domains increased by 10%, and the number of shifted TADs decreased by 7%. We found five TAD blocks with CoMut genes/events specific to ATC with certain mutations in genes including MAST-NSUN4, AM129B/TRUB2, COL5A1/PPP1R26, PPP1R26/GPSM1/CCDC183, and PRAC2/DLX4. For the majority of ATC and PTC cells, the HOXA10 and HIF2α signals close to the transcription start sites of CoMut genes within TADs were significantly stronger than those at the background. CNV breakpoints significantly overlapped with TAD boundaries in both TC subtypes. ATCs had more CNV losses overlapping with TAD boundaries, and noncoding SVs involved in intrachromosomal SVs, amplified inversions, and tandem duplication differed between ATC and PTC. TADs with short range were more abundant in ATC than PTC. More switches of A/B compartment types existed in ATC cells compared with PTC. Gene expression was significantly synchronized, and orchestrated by complex epigenetics and regulatory elements. CONCLUSION Chromatin interactions and gene alterations and regulations are largely heterogeneous in TC. CNVs and complex SVs may function in the TC genome by interplaying with TADs, and are largely different between ATC and PTC. Complexity of TC genomes, which are highly organized by 3D genome-wide interactions mediating mutational and structural variations and gene activation, may have been largely underappreciated. Our comprehensive analysis may provide key evidence and targets for more customized diagnosis and treatment of TC.
Collapse
Affiliation(s)
- Linlin Zhang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Miaomiao Xu
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Wanchun Zhang
- grid.470966.aDepartment of Nuclear Medicine, Shanxi Bethune Hospital (Shanxi Academy of Medical Sciences), Taiyuan, 03003 China
| | - Chuanying Zhu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092 China
| | - Zhilei Cui
- grid.412987.10000 0004 0630 1330Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Hongliang Fu
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yufei Ma
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Shuo Huang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Jian Cui
- BioGenius Bioinformatics Institute, Shanghai, 200050 People’s Republic of China
| | - Sheng Liang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Lei Huang
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hui Wang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| |
Collapse
|
2
|
Vazquez-Sandoval A, Velez-delValle C, Hernández-Mosqueira C, Marsch-Moreno M, Ayala-Sumuano JT, Kuri-Harcuch W. FAM129B is a cooperative protein that regulates adipogenesis. Biochem Biophys Res Commun 2023; 638:66-75. [PMID: 36442234 DOI: 10.1016/j.bbrc.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
FAM129B is one of Niban-like proteins described in neoplastic cells and implicated in melanoma cell invasion, but no reports have been published on FAM129B and cell differentiation. We show that FAM129B is early and transiently expressed and crucial for 3T3-F442A adipogenesis. Fam129b is expressed downstream of the early genes Cebpb, Klf4, Klf5 and Srebf1a, but upstream of Pparg2 since knockdown of Fam129b blocked Pparg2 expression and adipose differentiation. Glycogen synthase kinase 3 beta activity, a crucial kinase for adipogenesis, and the ERK1/2 are involved in FAM129B phosphorylation as part of the adipogenic program. Phosphorylated FAM129B is crucial for Pparg2 expression and the lipogenic gene expression downstream of Pparg2, and hence for adipogenesis. Fam129b knockdown reduced adipocyte cluster formation and size, regulating commitment and clonal amplification. In vivo, BAT, inguinal and epidydimal fat expressed Fam129b, suggesting a role in adipose tissue development. We conclude that FAM129B is a cooperative protein that regulates differentiation during the early stages of adipogenesis.
Collapse
Affiliation(s)
- Alfredo Vazquez-Sandoval
- Department of Cell Biology, Center of Research and Advanced Studies (CINVESTAV), IPN Avenida Instituto Politécnico Nacional 2508, Mexico City, CP 07360, Mexico
| | - Cristina Velez-delValle
- Department of Cell Biology, Center of Research and Advanced Studies (CINVESTAV), IPN Avenida Instituto Politécnico Nacional 2508, Mexico City, CP 07360, Mexico
| | - Claudia Hernández-Mosqueira
- Department of Cell Biology, Center of Research and Advanced Studies (CINVESTAV), IPN Avenida Instituto Politécnico Nacional 2508, Mexico City, CP 07360, Mexico
| | - Meytha Marsch-Moreno
- Department of Cell Biology, Center of Research and Advanced Studies (CINVESTAV), IPN Avenida Instituto Politécnico Nacional 2508, Mexico City, CP 07360, Mexico
| | - Jorge-Tonatiuh Ayala-Sumuano
- Department of Cell Biology, Center of Research and Advanced Studies (CINVESTAV), IPN Avenida Instituto Politécnico Nacional 2508, Mexico City, CP 07360, Mexico; Department of Biomedical Research, IDIX Biotech, Avenida de Los Portones 1151, Queretaro, CP 76100, Mexico
| | - Walid Kuri-Harcuch
- Department of Cell Biology, Center of Research and Advanced Studies (CINVESTAV), IPN Avenida Instituto Politécnico Nacional 2508, Mexico City, CP 07360, Mexico.
| |
Collapse
|
3
|
Mardones MD, Gupta K. Transcriptome Profiling of the Hippocampal Seizure Network Implicates a Role for Wnt Signaling during Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:12030. [PMID: 36233336 PMCID: PMC9569502 DOI: 10.3390/ijms231912030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a life-threatening condition characterized by recurrent hippocampal seizures. mTLE can develop after exposure to risk factors such as febrile seizure, trauma, and infection. Within the latent period between exposure and onset of epilepsy, pathological remodeling events occur that contribute to epileptogenesis. The molecular mechanisms responsible are currently unclear. We used the mouse intrahippocampal kainite model of mTLE to investigate transcriptional dysregulation in the ipsilateral and contralateral dentate gyrus (DG), representing the epileptogenic zone (EZ) and peri-ictal zone (PIZ). DG were analyzed after 3, 7, and 14 days by RNA sequencing. In both the EZ and PIZ, transcriptional dysregulation was dynamic over the epileptogenic period with early expression of genes representing cell signaling, migration, and proliferation. Canonical Wnt signaling was upregulated in the EZ and PIZ at 3 days. Expression of inflammatory genes differed between the EZ and PIZ, with early expression after 3 days in the PIZ and delayed expression after 7-14 days in the EZ. This suggests that critical gene changes occur early in the hippocampal seizure network and that Wnt signaling may play a role within the latent epileptogenic period. These findings may help to identify novel therapeutic targets that could prevent epileptogenesis.
Collapse
Affiliation(s)
- Muriel D Mardones
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kunal Gupta
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Zeng G, Lian C, Li W, An H, Han Y, Fang D, Zheng Q. Upregulation of FAM129B protects cardiomyocytes from hypoxia/reoxygenation-induced injury by inhibiting apoptosis, oxidative stress, and inflammatory response via enhancing Nrf2/ARE activation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1018-1031. [PMID: 34995000 DOI: 10.1002/tox.23461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Family with sequence similarity 129, member B (FAM129B) has been identified as a novel cytoprotective protein that facilitates the survival of detrimentally stimulated cells. However, whether FAM129B is involved in regulating cardiomyocyte survival after myocardial ischemia-reperfusion injury is unknown. The goal of this work was to evaluate the potential role of FAM129B in regulating hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro. We demonstrated that exposure to H/R markedly downregulated the expression of FAM129B in cardiomyocytes. Functional experiments revealed that the upregulation of FAM129B improved H/R-exposed cardiomyocyte viability, and ameliorated H/R-induced cardiomyocyte apoptosis, the generation of reactive oxygen species (ROS), and pro-inflammatory cytokine release. The upregulation of FAM129B significantly increased the nuclear expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), and reinforced Nrf2/antioxidant response element (ARE) activation in H/R-exposed cardiomyocytes. Moreover, FAM129B modulates Nrf2/ARE signaling in a Kelchlike ECH-associated protein 1-dependent manner. Notably, the inhibition of Nrf2 significantly blocked FAM129B-overexpression-induced cardioprotective effects in H/R-exposed cardiomyocytes. In summary, the findings of our work demonstrate that the upregulation of FAM129B ameliorates H/R-induced cardiomyocyte injury via enhancing Nrf2/ARE activation. Thus, our study indicates that FAM129B may play a role in myocardial ischemia-reperfusion injury and has the potential to be used as a cardioprotective target.
Collapse
Affiliation(s)
- Guangwei Zeng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Cheng Lian
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Wei Li
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Huixian An
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Yang Han
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Dong Fang
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
5
|
Hushpulian DM, Ammal Kaidery N, Ahuja M, Poloznikov AA, Sharma SM, Gazaryan IG, Thomas B. Challenges and Limitations of Targeting the Keap1-Nrf2 Pathway for Neurotherapeutics: Bach1 De-Repression to the Rescue. Front Aging Neurosci 2021; 13:673205. [PMID: 33897412 PMCID: PMC8060438 DOI: 10.3389/fnagi.2021.673205] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
The Keap1-Nrf2 signaling axis is a validated and promising target for cellular defense and survival pathways. This minireview discusses the potential off-target effects and their impact on future drug development originating from Keap1-targeting small molecules that function as displacement activators of the redox-sensitive transcription factor Nrf2. We argue that small-molecule displacement activators, similarly to electrophiles, will release both Nrf2 and other Keap1 client proteins from the ubiquitin ligase complex. This non-specificity is likely unavoidable and may result in off-target effects during Nrf2 activation by targeting Keap1. The small molecule displacement activators may also target Kelch domains in proteins other than Keap1, causing additional off-target effects unless designed to ensure specificity for the Kelch domain only in Keap1. A potentially promising and alternative therapeutic approach to overcome this non-specificity emerging from targeting Keap1 is to inhibit the Nrf2 repressor Bach1 for constitutive activation of the Nrf2 pathway and bypass the Keap1-Nrf2 complex.
Collapse
Affiliation(s)
- Dmitry M. Hushpulian
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Manuj Ahuja
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Andrey A. Poloznikov
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Sudarshana M. Sharma
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Irina G. Gazaryan
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- Department of Chemical Enzymology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
6
|
Structural Insight on Functional Regulation of Human MINERVA Protein. Int J Mol Sci 2020; 21:ijms21218186. [PMID: 33142954 PMCID: PMC7663100 DOI: 10.3390/ijms21218186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022] Open
Abstract
MINERVA (melanoma invasion by ERK), also known as FAM129B, is a member of the FAM129 protein family, which is only present in vertebrates. MINERVA is involved in key signaling pathways regulating cell survival, proliferation and apoptosis and found upregulated in many types of cancer promoting invasion. However, the exact function of the protein remains elusive. X-ray crystallographic methods were implemented to determine the crystal structure of MINERVAΔC, lacking C-terminal flexible region. Trypsin digestion was required before crystallization to obtain diffraction-quality crystals. While the N-terminal pleckstrin homology (PH) domain exhibits the typical fold of PH domains, lipid binding assay indicates specific affinity towards phosphatidic acid and inositol 3-phosphate. A helix-rich domain that constitutes the rest of the molecule demonstrates a novel L-shaped fold that encompasses the PH domain. The overall structure of MINERVAΔC with binding assays and cell-based experiments suggest plasma membrane association of MINERVA and its function seem to be tightly regulated by various motifs within the C-terminal flexible region. Elucidation of MINERVAΔC structure presents a novel fold for an α-helix bundle domain that would provide a binding platform for interacting partners.
Collapse
|
7
|
Cheng KC, Lin RJ, Cheng JY, Wang SH, Yu JC, Wu JC, Liang YJ, Hsu HM, Yu J, Yu AL. FAM129B, an antioxidative protein, reduces chemosensitivity by competing with Nrf2 for Keap1 binding. EBioMedicine 2019; 45:25-38. [PMID: 31262713 PMCID: PMC6642435 DOI: 10.1016/j.ebiom.2019.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The transcription factor Nrf2 is a master regulator of antioxidant response. While Nrf2 activation may counter increasing oxidative stress in aging, its activation in cancer can promote cancer progression and metastasis, and confer resistance to chemotherapy and radiotherapy. Thus, Nrf2 has been considered as a key pharmacological target. Unfortunately, there are no specific Nrf2 inhibitors for therapeutic application. Moreover, high Nrf2 activity in many tumors without Keap1 or Nrf2 mutations suggests that alternative mechanisms of Nrf2 regulation exist. METHODS Interaction of FAM129B with Keap1 is demonstrated by immunofluorescence, colocalization, co-immunoprecipitation and mammalian two-hybrid assay. Antioxidative function of FAM129B is analyzed by measuring ROS levels with DCF/flow cytometry, Nrf2 activation using luciferase reporter assay and determination of downstream gene expression by qPCR and wester blotting. Impact of FAM129B on in vivo chemosensitivity is examined in mice bearing breast and colon cancer xenografts. The clinical relevance of FAM129B is assessed by qPCR in breast cancer samples and data mining of publicly available databases. FINDINGS We have demonstrated that FAM129B in cancer promotes Nrf2 activity by reducing its ubiquitination through competition with Nrf2 for Keap1 binding via its DLG and ETGE motifs. In addition, FAM129B reduces chemosensitivity by augmenting Nrf2 antioxidative signaling and confers poor prognosis in breast and lung cancer. INTERPRETATION These findings demonstrate the important role of FAM129B in Nrf2 activation and antioxidative response, and identify FMA129B as a potential therapeutic target. FUND: The Chang Gung Medical Foundation (Taiwan) and the Ministry of Science and Technology (Taiwan).
Collapse
Affiliation(s)
- Kai-Chun Cheng
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ruey-Jen Lin
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Yan Cheng
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jyh-Cherng Yu
- General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chine Wu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Yuh-Jin Liang
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Huan-Ming Hsu
- General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - John Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
8
|
Zhou X, Yang F, Zhang Q, Miao Y, Hu X, Li A, Hou G, Wang Q, Kang J. FAM129B promoted tumor invasion and proliferation via facilitating the phosphorylation of FAK signaling and associated with adverse clinical outcome of non-small cell lung cancer patients. Onco Targets Ther 2018; 11:7493-7501. [PMID: 30498362 PMCID: PMC6207221 DOI: 10.2147/ott.s161852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Family with sequence similarity 129, member B (FAM129B), also called MINERVA, is upregulated and promotes tumor invasion in multiple types of cancer. However, the mechanism and clinicopathological significance of FAM129B remains unclear. Materials and methods Online KM-plotter tool and immunohistochemistry were used to predict the prognostic value of FAM129B expression in lung cancer tissues. Western blotting analysis, MTT, colony formation assay and matrigel invasion assay were performed after overexpressing or depleting FAM129B. Results In this study, using the online KM-plotter tool, we found FAM129B was correlated with adverse outcome in non-small cell lung cancer (NSCLC) patients (P<0.001). Immunohistochemistry results revealed that FAM129B showed negative or dim expression in normal lung tissues while presented positive cytoplasmic expression in both squamous cell lung carcinoma and lung adenocarcinoma. The positive ratio of FAM129B in clinical NSCLC tissue samples (77/187, 41.2%) was significantly higher than that in normal lung tissue samples (8/68, 11.8%; P<0.001). FAM129B expression associated with advanced TNM staging (P<0.001) and positive regional lymph node metastasis (P<0.001). The results of Kaplan-Meier analysis suggested that the survival time of patients with positive FAM129B expression was significantly shorter than those with negatively FAM129B expression (P<0.001). Proliferation and invasion assay revealed that FAM129B prominently facilitated tumor proliferation and invasion in NSCLC cells. Western blotting results revealed that FAM129B upregulated the expression of MMP2 and Cyclin D1 by enhancing the phosphorylation of FAK at Tyr 397 and Tyr 925. Incorporation of FAK inhibitor in the medium significantly downregulated the phosphorylation of FAK and subsequently attenuated increasing expression of MMP2 and Cyclin D1 induced by FAM129B overexpression. Conclusion Our results indicated that FAM129B may be a new prognosis predictor of NSCLC patients and impact tumor invasion and proliferation of NSCLC cells through promoting the activation of FAK signaling.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Respiratory Medicine, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Fangfei Yang
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qin Zhang
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xuejun Hu
- Department of Respiratory Disease in Geratology, The First Hospital of China Medical University, Shenyang, China
| | - Ailin Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, China,
| | - Gang Hou
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Grandori C, Kemp CJ. Personalized Cancer Models for Target Discovery and Precision Medicine. Trends Cancer 2018; 4:634-642. [PMID: 30149881 PMCID: PMC6242713 DOI: 10.1016/j.trecan.2018.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
Although cancer research is progressing at an exponential rate, translating this knowledge to develop better cancer drugs and more effectively match drugs to patients is lagging. Genome profiling of tumors provides a snapshot of the genetic complexity of individual tumors, yet this knowledge is insufficient to guide therapy for most patients. Model systems, usually cancer cell lines or mice, have been instrumental in cancer research and drug development, but translation of results to the clinic is inefficient, in part, because these models do not sufficiently reflect the complexity and heterogeneity of human cancer. Here, we discuss the potential of combining genomics with high-throughput functional testing of patient-derived tumor cells to overcome key roadblocks in both drug target discovery and precision medicine.
Collapse
|
10
|
Li Y, Jia C, Zhang D, Ni G, Miao X, Tu R. Propofol-induced neurotoxicity in hESCs involved in activation of miR-206/PUMA signal pathway. Cancer Biomark 2018; 20:175-181. [PMID: 28869449 DOI: 10.3233/cbm-170167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Studies in developing animals have demonstrated that when anesthetic agents, such as propofol, are early administered in life, it can lead to neuronal cell death and learning disabilities. However, the mechanisms causing these effects remains unknown. A recent report found that propofol could significantly upregulat miR-206 expression in the human ASCs. miR-206 could also induce apoptosis in human malignant cancers. Therefore, in this study, we hypothesized that propofol induces neurotoxicity in human embryonic stem cells (hESCs). METHODS hESCs were exposed to propofol (50 μM) for 6 hr and cell death was assessed using TUNEL staining, and cleaved caspase-3 expression. miR-206 was knocked down using antagomir. PUMA was knocked down using a small interfering RNA. microRNA-206 (miR-206) expression was assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). PUMA protein expression was detected using western blot assay. RESULTS hESCs exposed to propofol showed a significant increase in TUNEL positive cells and cleaved caspase-3 expression, followed by the upregulation of miR-206 and PUMA expression. Targeting PUMA inhibits propofol-induced cell apoptosis; miR-206 knockdown decreased propofol-induced cell apoptosis, cleaved caspase-3 and PUMA expression. CONCLUSIONS Propofol induce s cell death in hESC-derived neurons via activation of miR-206/PUMA signal pathway.
Collapse
Affiliation(s)
- Yu Li
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changxin Jia
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dianlong Zhang
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guangzhen Ni
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xia Miao
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruirong Tu
- Department of Clinical Laboratory, People's Hospital of Weifang, Weifang, Shandong, China
| |
Collapse
|
11
|
Ross KC, Andrews AJ, Marion CD, Yen TJ, Bhattacharjee V. Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells. Mol Cancer Ther 2017; 16:1596-1609. [PMID: 28500236 DOI: 10.1158/1535-7163.mct-16-0798] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/04/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022]
Abstract
Metastatic melanoma cells commonly acquire resistance to BRAF V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemurafenib (BRAFi) treatment in sensitive versus acquired resistant melanoma cells. Ablation of PHGDH via siRNA sensitized acquired resistant cells to vemurafenib. Inhibiting the folate cycle, directly downstream of serine synthesis, with methotrexate also displayed similar sensitization. Using the DNA-damaging drug gemcitabine, we show that gemcitabine pretreatment sensitized resistant melanoma cells to BRAFis vemurafenib and dabrafenib. We extended our findings to BRAF WT tumor cell lines that are intrinsically resistant to vemurafenib and dabrafenib. Pretreatment of pancreatic cancer and non-small cell lung cancer cell lines with sublethal doses of 50 and 5 nmol/L of gemcitabine, respectively, enhanced killing by both vemurafenib and dabrafenib. The novel aspects of this study are the direct identification of serine biosynthesis as a critical mechanism of BRAF V600E inhibitor resistance and the first successful example of using gemcitabine + BRAFis in combination to kill previously drug-resistant cancer cells, creating the translational potential of pretreatment with gemcitabine prior to BRAFi treatment of tumor cells to reverse resistance within the mutational profile and the WT. Mol Cancer Ther; 16(8); 1596-609. ©2017 AACR.
Collapse
Affiliation(s)
| | - Andrew J Andrews
- Evol Science, Philadelphia, Pennsylvania.,Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
12
|
Patel SJ, Trivedi GL, Darie CC, Clarkson BD. The possible roles of B-cell novel protein-1 (BCNP1) in cellular signalling pathways and in cancer. J Cell Mol Med 2016; 21:456-466. [PMID: 27680505 PMCID: PMC5323820 DOI: 10.1111/jcmm.12989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/12/2016] [Indexed: 01/15/2023] Open
Abstract
B‐cell novel protein‐1 (BCNP1) or Family member of 129C (FAM129C) was identified as a B‐cell‐specific plasma‐membrane protein. Bioinformatics analysis predicted that BCNP1 might be heavily phosphorylated. The BCNP1 protein contains a pleckstrin homology (PH) domain, two proline‐rich (PR) regions and a Leucine Zipper (LZ) domain suggesting that it may be involved in protein‐protein interactions. Using The Cancer Genome Atlas (TCGA) data sets, we investigated the correlation of alteration of the BCNP1 copy‐number changes and mutations in several cancer types. We also investigated the function of BCNP1 in cellular signalling pathways. We found that BCNP1 is highly altered in some types of cancers and that BCNP1 copy‐number changes and mutations co‐occur with other molecular alteration events for TP53 (tumour protein P53), PIK3CA (Phosphatidylinositol‐4,5‐Bisphosphate 3‐Kinase, Catalytic Subunit Alpha), MAPK1 (mitogen‐activated protein kinase‐1; ERK: extracellular signal regulated kinase), KRAS (Kirsten rat sarcoma viral oncogene homolog) and AKT2 (V‐Akt Murine Thymoma Viral Oncogene Homolog 2). We also found that PI3K (Phoshoinositide 3‐kinase) inhibition and p38 MAPK (p38 mitogen‐activated protein kinase) activation leads to reduction in phosphorylation of BCNP1 at serine residues, suggesting that BCNP1 phosphorylation is PI3K and p38MAPK dependent and that it might be involved in cancer. Its degradation depends on a proteasome‐mediated pathway.
Collapse
Affiliation(s)
- Sapan J Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY, USA.,Department of Chemistry and Biomolecular Science, Clarkson University, Biochemistry and Proteomics Group, Potsdam, NY, USA
| | | | - Costel C Darie
- Department of Chemistry and Biomolecular Science, Clarkson University, Biochemistry and Proteomics Group, Potsdam, NY, USA
| | - Bayard D Clarkson
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY, USA
| |
Collapse
|
13
|
Lu B, Green BA, Farr JM, Lopes FCM, Van Raay TJ. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials. Cancers (Basel) 2016; 8:cancers8090082. [PMID: 27598201 PMCID: PMC5040984 DOI: 10.3390/cancers8090082] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway is intricately involved in many aspects of development and is the root cause of an increasing number of diseases. For example, colorectal cancer is the second leading cause of death in the industrialized world and aberration of Wnt signaling within the colonic stem cell is the cause of more than 90% of these cancers. Despite our advances in successfully targeting other pathways, such as Human Epidermal Growth Factor Receptor 2 (HER2), there are no clinically relevant therapies available for Wnt-related diseases. Here, we investigated where research activities are focused with respect to Wnt signaling modulators by searching the United States Patent and Trade Office (USPTO) for patents and patent applications related to Wnt modulators and compared this to clinical trials focusing on Wnt modulation. We found that while the transition of intellectual property surrounding the Wnt ligand-receptor interface to clinical trials is robust, this is not true for specific inhibitors of β-catenin, which is constitutively active in many cancers. Considering the ubiquitous use of the synthetic T-cell Factor/Lymphoid Enhancer Factor (TCF/Lef) reporter system and its success in identifying novel modulators in vitro, we speculate that this model of drug discovery does not capture the complexity of in vivo Wnt signaling that may be required if we are to successfully target the Wnt pathway in the clinic. Notwithstanding, increasingly more complex models are being developed, which may not be high throughput, but more pragmatic in our pursuit to control Wnt signaling.
Collapse
Affiliation(s)
- Benjamin Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Brooke A Green
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jacqueline M Farr
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Flávia C M Lopes
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Terence J Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
14
|
Mao L, Liu C, Wang Z, Niu X, Xue L, Zhou Z, Cai Z, Yu M, Li Y, Wu D, Li L. A genome-wide loss-of-function screening method for minimizing false-negatives caused by functional redundancy. Cell Res 2016; 26:1067-70. [PMID: 27561817 PMCID: PMC5034115 DOI: 10.1038/cr.2016.97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Li Mao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | - Chenglin Liu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaofeng Niu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | - Liang Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | - Zhilei Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | - Zhenying Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | - Meng Yu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Yixue Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Dianqing Wu
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| |
Collapse
|
15
|
Abstract
The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/β-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit.
Collapse
|
16
|
Abstract
Ras GTPase-activating proteins (GAPs) are important regulators for Ras activation, which is instrumental in tumor development. However, the mechanism underlying this regulation remains elusive. We demonstrate here that activated EGFR phosphorylates the Y593 residue of the protein known as family with sequence similarity 129, member B (FAM129B), which is overexpressed in many types of human cancer. FAM129B phosphorylation increased the interaction between FAM129B and Ras, resulting in reduced binding of p120-RasGAP to Ras. FAM129B phosphorylation promoted Ras activation, increasing ERK1/2- and PKM2-dependent β-catenin transactivation and leading to the enhanced glycolytic gene expression and the Warburg effect; promoting tumor cell proliferation and invasion; and supporting brain tumorigenesis. Our studies unearthed a novel and important mechanism underlying EGFR-mediated Ras activation in tumor development.
Collapse
|
17
|
He S, Lu Y, Liu X, Huang X, Keller ET, Qian CN, Zhang J. Wnt3a: functions and implications in cancer. CHINESE JOURNAL OF CANCER 2015; 34:554-62. [PMID: 26369691 PMCID: PMC4593336 DOI: 10.1186/s40880-015-0052-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
Wnt3a, one of Wnt family members, plays key roles in regulating pleiotropic cellular functions, including self-renewal, proliferation, differentiation, and motility. Accumulating evidence has suggested that Wnt3a promotes or suppresses tumor progression via the canonical Wnt signaling pathway depending on cancer type. In addition, the roles of Wnt3a signaling can be inhibited by multiple proteins or chemicals. Herein, we summarize the latest findings on Wnt3a as an important therapeutic target in cancer.
Collapse
Affiliation(s)
- Sha He
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Yi Lu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xin Huang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Chao-Nan Qian
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 51006, P.R. China.
| | - Jian Zhang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China. .,Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Mozūraitienė J, Bielskienė K, Atkočius V, Labeikytė D. Molecular alterations in signal pathways of melanoma and new personalized treatment strategies: Targeting of Notch. MEDICINA-LITHUANIA 2015; 51:133-145. [PMID: 28705475 DOI: 10.1016/j.medici.2015.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 04/14/2015] [Indexed: 02/09/2023]
Abstract
Despite modern achievements in therapy of malignant melanomas new treatment strategies are welcomed in clinics for survival of patients. Now it is supposed that personalized molecular therapies for each patient are needed concerning a specificity of molecular alterations in patient's tumors. In human melanoma, Notch signaling interacts with other pathways, including MAPK, PI3K-AKT, NF-kB, and p53. This article discusses mutated genes and leading aberrant signal pathways in human melanoma which are of interest concerning to their perspective for personalized treatment strategies in melanoma. We speculate that E3 ubiquitin ligases MDM2 and MDM4 can be attractive therapeutic target for p53 and Notch signaling pathways in malignant melanoma by using small molecule inhibitors. It is possible that restoration of p53-MDM2-NUMB complexes in melanoma can restore wild type p53 function and positively modulate Notch pathway. In this review we summarize recent data about novel US Food and Drug Administration approved target drugs for metastatic melanoma treatment, and suppose model for treatment strategy by targeting Notch.
Collapse
Affiliation(s)
| | - Kristina Bielskienė
- Department of Biochemistry and Molecular Biology, Vilnius University, Vilnius, Lithuania.
| | | | - Danutė Labeikytė
- Department of Biochemistry and Molecular Biology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|