1
|
Alonso-Olivares H, Marques MM, Prieto-Colomina A, López-Ferreras L, Martínez-García N, Vázquez-Jiménez A, Borrell V, Marin MC, Fernandez-Alonso R. Mouse cortical organoids reveal key functions of p73 isoforms: TAp73 governs the establishment of the archetypical ventricular-like zones while DNp73 is central in the regulation of neural cell fate. Front Cell Dev Biol 2024; 12:1464932. [PMID: 39376628 PMCID: PMC11456701 DOI: 10.3389/fcell.2024.1464932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Neurogenesis is tightly regulated in space and time, ensuring the correct development and organization of the central nervous system. Critical regulators of brain development and morphogenesis in mice include two members of the p53 family: p53 and p73. However, dissecting the in vivo functions of these factors and their various isoforms in brain development is challenging due to their pleiotropic effects. Understanding their role, particularly in neurogenesis and brain morphogenesis, requires innovative experimental approaches. Methods To address these challenges, we developed an efficient and highly reproducible protocol to generate mouse brain organoids from pluripotent stem cells. These organoids contain neural progenitors and neurons that self-organize into rosette-like structures resembling the ventricular zone of the embryonic forebrain. Using this model, we generated organoids from p73-deficient mouse cells to investigate the roles of p73 and its isoforms (TA and DNp73) during brain development. Results and Discussion Organoids derived from p73-deficient cells exhibited increased neuronal apoptosis and reduced neural progenitor proliferation, linked to compensatory activation of p53. This closely mirrors previous in vivo observations, confirming that p73 plays a pivotal role in brain development. Further dissection of p73 isoforms function revealed a dual role of p73 in regulating brain morphogenesis, whereby TAp73 controls transcriptional programs essential for the establishment of the neurogenic niche structure, while DNp73 is responsible for the precise and timely regulation of neural cell fate. These findings highlight the distinct roles of p73 isoforms in maintaining the balance of neural progenitor cell biology, providing a new understanding of how p73 regulates brain morphogenesis.
Collapse
Affiliation(s)
- Hugo Alonso-Olivares
- Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Margarita M. Marques
- Instituto de Desarrollo Ganadero y Sanidad Animal and Departamento de Producción Animal, Universidad de León, León, Spain
| | - Anna Prieto-Colomina
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Alicante, Spain
| | - Lorena López-Ferreras
- Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Nicole Martínez-García
- Instituto de Biomedicina and Departamento de Producción Animal, Universidad de León, León, Spain
| | - Alberto Vázquez-Jiménez
- Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Victor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Alicante, Spain
| | - Maria C. Marin
- Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Rosalia Fernandez-Alonso
- Instituto de Biomedicina and Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
2
|
Consalvo KM, Rijal R, Beruvides SL, Mitchell R, Beauchemin K, Collins D, Scoggin J, Scott J, Gomer RH. PTEN and the PTEN-like phosphatase CnrN have both distinct and overlapping roles in a Dictyostelium chemorepulsion pathway. J Cell Sci 2024; 137:jcs262054. [PMID: 38940195 PMCID: PMC11317092 DOI: 10.1242/jcs.262054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Little is known about eukaryotic chemorepulsion. The enzymes phosphatase and tensin homolog (PTEN) and CnrN dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Dictyostelium discoideum cells require both PTEN and CnrN to induce chemorepulsion of cells away from the secreted chemorepellent protein AprA. How D. discoideum cells utilize two proteins with redundant phosphatase activities in response to AprA is unclear. Here, we show that D. discoideum cells require both PTEN and CnrN to locally inhibit Ras activation, decrease basal levels of PI(3,4,5)P3 and increase basal numbers of macropinosomes, and AprA prevents this increase. AprA requires both PTEN and CnrN to increase PI(4,5)P2 levels, decrease PI(3,4,5)P3 levels, inhibit proliferation, decrease myosin II phosphorylation and increase filopod sizes. PTEN, but not CnrN, decreases basal levels of PI(4,5)P2, and AprA requires PTEN, but not CnrN, to induce cell roundness. Together, our results suggest that CnrN and PTEN play unique roles in AprA-induced chemorepulsion.
Collapse
Affiliation(s)
- Kristen M. Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Steven L. Beruvides
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Ryan Mitchell
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Karissa Beauchemin
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Danni Collins
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jack Scoggin
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jerome Scott
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
3
|
Consalvo KM, Rijal R, Beruvides SL, Mitchell R, Beauchemin K, Collins D, Scoggin J, Scott J, Gomer RH. PTEN and the PTEN-like phosphatase CnrN have both distinct and overlapping roles in a Dictyostelium chemorepulsion pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581751. [PMID: 38464111 PMCID: PMC10925239 DOI: 10.1101/2024.02.23.581751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The directed movement of eukaryotic cells is crucial for processes such as embryogenesis and immune cell trafficking. The enzyme Phosphatase and tensin homolog (PTEN) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P 3 ] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P 2 ]. Dictyostelium discoideum cells require both PTEN and the PTEN-like phosphatase CnrN to locally inhibit Ras activation to induce biased movement of cells away from the secreted chemorepellent protein AprA. Both PTEN and CnrN decrease basal levels of PI(3,4,5)P 3 and increase basal numbers of macropinosomes, and AprA prevents this increase. AprA requires both PTEN and CnrN to increase PI(4,5)P 2 levels, decrease PI(3,4,5)P 3 levels, inhibit proliferation, decrease myosin II phosphorylation, and increase filopod sizes. AprA causes PTEN, similar to CnrN, to localize to the side of the cell towards AprA in an AprA gradient. However, PTEN and CnrN also have distinct roles in some signaling pathways. PTEN, but not CnrN, decreases basal levels of PI(4,5)P 2 , AprA requires PTEN, but not CnrN, to induce cell roundness, and CnrN and PTEN have different effects on the number of filopods and pseudopods, and the sizes of filopods. Together, our results suggest that CnrN and PTEN play unique roles in D. discoideum signaling pathways, and possibly dephosphorylate PI(3,4,5)P 3 in different membrane domains, to mediate chemorepulsion away from AprA.
Collapse
|
4
|
Xu J, Deng X, Gu A, Cai Y, Huang Y, Zhang W, Zhang Y, Wen W, Xie Y. Ccdc85c-Par3 condensates couple cell polarity with Notch to control neural progenitor proliferation. Cell Rep 2023; 42:112677. [PMID: 37352102 DOI: 10.1016/j.celrep.2023.112677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
Polarity proteins regulate the proliferation and differentiation of neural progenitors to generate neurons during brain development through multiple signaling pathways. However, how cell polarity couples the signaling pathways remains unclear. Here, we show that coiled-coil domain-containing protein 85c (Ccdc85c) interacts with the polarity protein Par3 to regulate the proliferation of radial glial cells (RGCs) via phase separation coupled to percolation (PSCP). We find that the interaction with Ccdc85c relieves the intramolecular auto-inhibition of Par3, which leads to PSCP of Par3. Downregulation of Ccdc85c causes RGC differentiation. Importantly, the open conformation of Par3 facilitates the recruitment of the Notch regulator Numb to the Par3 condensates, which might prevent the attenuation of Notch activity to maintain RGC proliferation. Furthermore, ectopic activation of Notch signaling rescues RGC proliferation defects caused by the downregulation of Ccdc85c. These results suggest that Ccdc85c-mediated PSCP of Par3 regulates Notch signaling to control RGC proliferation during brain development.
Collapse
Affiliation(s)
- Jiawen Xu
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xin Deng
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Aihong Gu
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuqun Cai
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yunyun Huang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wen Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yiqing Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenyu Wen
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; The Shanghai Key Laboratory of Medical Epigenetics, National Center for Neurological Disorders, Fudan University, Shanghai 200032, China.
| | - Yunli Xie
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Roussat M, Jungas T, Audouard C, Omerani S, Medevielle F, Agius E, Davy A, Pituello F, Bel-Vialar S. Control of G 2 Phase Duration by CDC25B Modulates the Switch from Direct to Indirect Neurogenesis in the Neocortex. J Neurosci 2023; 43:1154-1165. [PMID: 36596698 PMCID: PMC9962783 DOI: 10.1523/jneurosci.0825-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly or indirectly, through the production of intermediate basal progenitors. The balance between these major progenitor types is critical for the production of the proper number and types of neurons, and it is thus important to decipher the cellular and molecular cues controlling this equilibrium. Here we address the role of a cell cycle regulator, the CDC25B phosphatase, in this process. We show that, in the developing mouse neocortex of both sex, deleting CDC25B in apical progenitors leads to a transient increase in the production of TBR1+ neurons at the expense of TBR2+ basal progenitors. This phenotype is associated with lengthening of the G2 phase of the cell cycle, the total cell cycle length being unaffected. Using in utero electroporation and cortical slice cultures, we demonstrate that the defect in TBR2+ basal progenitor production requires interaction with CDK1 and is because of the G2 phase lengthening in CDC25B mutants. Together, this study identifies a new role for CDC25B and G2 phase length in direct versus indirect neurogenesis at early stages of cortical development.SIGNIFICANCE STATEMENT This study is the first analysis of the function of CDC25B, a G2/M regulator, in the developing neocortex. We show that removing CDC25B function leads to a transient increase in neuronal differentiation at early stages, occurring simultaneously with a decrease in basal intermediate progenitors (bIPs). Conversely, a CDC25B gain of function promotes production of bIPs, and this is directly related to CDC25B's ability to regulate CDK1 activity. This imbalance of neuron/progenitor production is linked to a G2 phase lengthening in apical progenitors; and using pharmacological treatments on cortical slice cultures, we show that shortening the G2 phase is sufficient to enhance bIP production. Our results reveal the importance of G2 phase length regulation for neural progenitor fate determination.
Collapse
Affiliation(s)
- Melanie Roussat
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Christophe Audouard
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Sofiane Omerani
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Francois Medevielle
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Eric Agius
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Alice Davy
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Fabienne Pituello
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Sophie Bel-Vialar
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| |
Collapse
|
6
|
Dong C, Zhao C, Chen X, Berry K, Wang J, Zhang F, Liao Y, Han R, Ogurek S, Xu L, Zhang L, Lin Y, Zhou W, Xin M, Lim DA, Campbell K, Nakafuku M, Waclaw RR, Lu QR. Conserved and Distinct Functions of the Autism-Related Chromatin Remodeler CHD8 in Embryonic and Adult Forebrain Neurogenesis. J Neurosci 2022; 42:8373-8392. [PMID: 36127134 PMCID: PMC9653284 DOI: 10.1523/jneurosci.2400-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
The chromatin remodeler CHD8 represents a high-confidence risk factor in autism, a multistage progressive neurologic disorder, however the underlying stage-specific functions remain elusive. In this study, by analyzing Chd8 conditional knock-out mice (male and female), we find that CHD8 controls cortical neural stem/progenitor cell (NSC) proliferation and survival in a stage-dependent manner. Strikingly, inducible genetic deletion reveals that CHD8 is required for the production and fitness of transit-amplifying intermediate progenitors (IPCs) essential for upper-layer neuron expansion in the embryonic cortex. p53 loss of function partially rescues apoptosis and neurogenesis defects in the Chd8-deficient brain. Further, transcriptomic and epigenomic profiling indicates that CHD8 regulates the chromatin accessibility landscape to activate neurogenesis-promoting factors including TBR2, a key regulator of IPC neurogenesis, while repressing DNA damage- and p53-induced apoptotic programs. In the adult brain, CHD8 depletion impairs forebrain neurogenesis by impeding IPC differentiation from NSCs in both subventricular and subgranular zones; however, unlike in embryos, it does not affect NSC proliferation and survival. Treatment with an antidepressant approved by the Federal Drug Administration (FDA), fluoxetine, partially restores adult hippocampal neurogenesis in Chd8-ablated mice. Together, our multistage functional studies identify temporally specific roles for CHD8 in developmental and adult neurogenesis, pointing to a potential strategy to enhance neurogenesis in the CHD8-deficient brain.SIGNIFICANCE STATEMENT The role of the high-confidence autism gene CHD8 in neurogenesis remains incompletely understood. Here, we identify a stage-specific function of CHD8 in development of NSCs in developing and adult brains by conserved, yet spatiotemporally distinct, mechanisms. In embryonic cortex, CHD8 is critical for the proliferation, survival, and differentiation of both NSC and IPCs during cortical neurogenesis. In adult brain, CHD8 is required for IPC generation but not the proliferation and survival of adult NSCs. Treatment with FDA-approved antidepressant fluoxetine partially rescues the adult neurogenesis defects in CHD8 mutants. Thus, our findings help resolve CHD8 functions throughout life during embryonic and adult neurogenesis and point to a potential avenue to promote neurogenesis in CHD8 deficiency.
Collapse
Affiliation(s)
- Chen Dong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Xiang Chen
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Feng Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Yunfei Liao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Rong Han
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Sean Ogurek
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Lingli Xu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Li Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Mei Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Daniel A Lim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Kenneth Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Masato Nakafuku
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ronald R Waclaw
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
7
|
Mora-Bermúdez F, Kanis P, Macak D, Peters J, Naumann R, Xing L, Sarov M, Winkler S, Oegema CE, Haffner C, Wimberger P, Riesenberg S, Maricic T, Huttner WB, Pääbo S. Longer metaphase and fewer chromosome segregation errors in modern human than Neanderthal brain development. SCIENCE ADVANCES 2022; 8:eabn7702. [PMID: 35905187 PMCID: PMC9337762 DOI: 10.1126/sciadv.abn7702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Since the ancestors of modern humans separated from those of Neanderthals, around 100 amino acid substitutions spread to essentially all modern humans. The biological significance of these changes is largely unknown. Here, we examine all six such amino acid substitutions in three proteins known to have key roles in kinetochore function and chromosome segregation and to be highly expressed in the stem cells of the developing neocortex. When we introduce these modern human-specific substitutions in mice, three substitutions in two of these proteins, KIF18a and KNL1, cause metaphase prolongation and fewer chromosome segregation errors in apical progenitors of the developing neocortex. Conversely, the ancestral substitutions cause shorter metaphase length and more chromosome segregation errors in human brain organoids, similar to what we find in chimpanzee organoids. These results imply that the fidelity of chromosome segregation during neocortex development improved in modern humans after their divergence from Neanderthals.
Collapse
Affiliation(s)
- Felipe Mora-Bermúdez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Kanis
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dominik Macak
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany
| | | | - Tomislav Maricic
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Okinawa Institute of Science and Technology, Onna-son 904-0495, Japan
| |
Collapse
|
8
|
Mora-Bermúdez F, Huttner WB. What Are the Human-Specific Aspects of Neocortex Development? Front Neurosci 2022; 16:878950. [PMID: 35495057 PMCID: PMC9047014 DOI: 10.3389/fnins.2022.878950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
When considering what makes us human, the development of the neocortex, the seat of our higher cognitive abilities, is of central importance. Throughout this complex developmental process, neocortical stem and progenitor cells (NSPCs) exert a priming role in determining neocortical tissue fate, through a series of cellular and molecular events. In this Perspective article, we address five questions of relevance for potentially human-specific aspects of NSPCs, (i) Are there human-specific NSPC subtypes? (ii) What is the functional significance of the known temporal differences in NSPC dynamics between human and other great apes? (iii) Are there functional interactions between the human-specific genes preferentially expressed in NSPCs? (iv) Do humans amplify certain metabolic pathways for NSPC proliferation? and finally (v) Have differences evolved during human evolution, notably between modern humans and Neandertals, that affect the performance of key genes operating in NSPCs? We discuss potential implications inherent to these questions, and suggest experimental approaches on how to answer them, hoping to provide incentives to further understand key issues of human cortical development.
Collapse
Affiliation(s)
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
9
|
Nomura T, Gotoh H, Kiyonari H, Ono K. Cell Type-Specific Transcriptional Control of Gsk3β in the Developing Mammalian Neocortex. Front Neurosci 2022; 16:811689. [PMID: 35401100 PMCID: PMC8983961 DOI: 10.3389/fnins.2022.811689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Temporal control of neurogenesis is central for the development and evolution of species-specific brain architectures. The balance between progenitor expansion and neuronal differentiation is tightly coordinated by cell-intrinsic and cell-extrinsic cues. Wnt signaling plays pivotal roles in the proliferation and differentiation of neural progenitors in a temporal manner. However, regulatory mechanisms that adjust intracellular signaling amplitudes according to cell fate progression remain to be elucidated. Here, we report the transcriptional controls of Gsk3β, a critical regulator of Wnt signaling, in the developing mouse neocortex. Gsk3β expression was higher in ventricular neural progenitors, while it gradually declined in differentiated neurons. We identified active cis-regulatory module (CRM) of Gsk3β that responded to cell type-specific transcription factors, such as Sox2, Sox9, and Neurogenin2. Furthermore, we found extensive conservation of the CRM among mammals but not in non-mammalian amniotes. Our data suggest that a mammalian-specific CRM drives the cell type-specific activity of Gsk3β to fine tune Wnt signaling, which contributes to the tight control of neurogenesis during neocortical development.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, INAMORI Memorial Building, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, INAMORI Memorial Building, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, INAMORI Memorial Building, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Casingal CR, Descant KD, Anton ES. Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron 2022; 110:1100-1115. [PMID: 35216663 PMCID: PMC8989671 DOI: 10.1016/j.neuron.2022.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023]
Abstract
Radial progenitor development and function lay the foundation for the construction of the cerebral cortex. Radial glial scaffold, through its functions as a source of neurogenic progenitors and neuronal migration guide, is thought to provide a template for the formation of the cerebral cortex. Emerging evidence is challenging this limited view. Intriguingly, radial glial scaffold may also play a role in axonal growth, guidance, and neuronal connectivity. Radial glial cells not only facilitate the generation, placement, and allocation of neurons in the cortex but also regulate how they wire up. The organization and function of radial glial cells may thus be a unifying feature of the developing cortex that helps to precisely coordinate the right patterns of neurogenesis, neuronal placement, and connectivity necessary for the emergence of a functional cerebral cortex. This perspective critically explores this emerging view and its impact in the context of human brain development and disorders.
Collapse
Affiliation(s)
- Cristine R Casingal
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine D Descant
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Koch K, Bartmann K, Hartmann J, Kapr J, Klose J, Kuchovská E, Pahl M, Schlüppmann K, Zühr E, Fritsche E. Scientific Validation of Human Neurosphere Assays for Developmental Neurotoxicity Evaluation. FRONTIERS IN TOXICOLOGY 2022; 4:816370. [PMID: 35295221 PMCID: PMC8915868 DOI: 10.3389/ftox.2022.816370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
There is a call for a paradigm shift in developmental neurotoxicity (DNT) evaluation, which demands the implementation of faster, more cost-efficient, and human-relevant test systems than current in vivo guideline studies. Under the umbrella of the Organisation for Economic Co-operation and Development (OECD), a guidance document is currently being prepared that instructs on the regulatory use of a DNT in vitro battery (DNT IVB) for fit-for-purpose applications. One crucial issue for OECD application of methods is validation, which for new approach methods (NAMs) requires novel approaches. Here, mechanistic information previously identified in vivo, as well as reported neurodevelopmental adversities in response to disturbances on the cellular and tissue level, are of central importance. In this study, we scientifically validate the Neurosphere Assay, which is based on human primary neural progenitor cells (hNPCs) and an integral part of the DNT IVB. It assesses neurodevelopmental key events (KEs) like NPC proliferation (NPC1ab), radial glia cell migration (NPC2a), neuronal differentiation (NPC3), neurite outgrowth (NPC4), oligodendrocyte differentiation (NPC5), and thyroid hormone-dependent oligodendrocyte maturation (NPC6). In addition, we extend our work from the hNPCs to human induced pluripotent stem cell-derived NPCs (hiNPCs) for the NPC proliferation (iNPC1ab) and radial glia assays (iNPC2a). The validation process we report for the endpoints studied with the Neurosphere Assays is based on 1) describing the relevance of the respective endpoints for brain development, 2) the confirmation of the cell type-specific morphologies observed in vitro, 3) expressions of cell type-specific markers consistent with those morphologies, 4) appropriate anticipated responses to physiological pertinent signaling stimuli and 5) alterations in specific in vitro endpoints upon challenges with confirmed DNT compounds. With these strong mechanistic underpinnings, we posit that the Neurosphere Assay as an integral part of the DNT in vitro screening battery is well poised for DNT evaluation for regulatory purposes.
Collapse
Affiliation(s)
- Katharina Koch
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kristina Bartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Hartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Jördis Klose
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Eliška Kuchovská
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Melanie Pahl
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kevin Schlüppmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Etta Zühr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
- *Correspondence: Ellen Fritsche,
| |
Collapse
|
12
|
Singular Adult Neural Stem Cells Do Not Exist. Cells 2022; 11:cells11040722. [PMID: 35203370 PMCID: PMC8870225 DOI: 10.3390/cells11040722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neural stem cells (aNSCs) are the source for the continuous production of new neurons throughout life. This so-called adult neurogenesis has been extensively studied; the intermediate cellular stages are well documented. Recent discoveries have raised new controversies in the field, such as the notion that progenitor cells hold similar self-renewal potential as stem cells, or whether different types of aNSCs exist. Here, we discuss evidence for heterogeneity of aNSCs, including short-term and long-term self-renewing aNSCs, regional and temporal differences in aNSC function, and single cell transcriptomics. Reviewing various genetic mouse models used for targeting aNSCs and lineage tracing, we consider potential lineage relationships between Ascl1-, Gli1-, and Nestin-targeted aNSCs. We present a multidimensional model of adult neurogenesis that incorporates recent findings and conclude that stemness is a phenotype, a state of properties that can change with time, rather than a cell property, which is static and immutable. We argue that singular aNSCs do not exist.
Collapse
|
13
|
Yildiz CB, Zimmer-Bensch G. Role of DNMTs in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:363-394. [DOI: 10.1007/978-3-031-11454-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Perez-García P, Pardillo-Díaz R, Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Castro C, Nunez-Abades P, Carrascal L. Refinement of Active and Passive Membrane Properties of Layer V Pyramidal Neurons in Rat Primary Motor Cortex During Postnatal Development. Front Mol Neurosci 2021; 14:754393. [PMID: 34924951 PMCID: PMC8671142 DOI: 10.3389/fnmol.2021.754393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Achieving the distinctive complex behaviors of adult mammals requires the development of a great variety of specialized neural circuits. Although the development of these circuits begins during the embryonic stage, they remain immature at birth, requiring a postnatal maturation process to achieve these complex tasks. Understanding how the neuronal membrane properties and circuits change during development is the first step to understand their transition into efficient ones. Thus, using whole cell patch clamp recordings, we have studied the changes in the electrophysiological properties of layer V pyramidal neurons of the rat primary motor cortex during postnatal development. Among all the parameters studied, only the voltage threshold was established at birth and, although some of the changes occurred mainly during the second postnatal week, other properties such as membrane potential, capacitance, duration of the post-hyperpolarization phase or the maximum firing rate were not defined until the beginning of adulthood. Those modifications lead to a decrease in neuronal excitability and to an increase in the working range in young adult neurons, allowing more sensitive and accurate responses. This maturation process, that involves an increase in neuronal size and changes in ionic conductances, seems to be influenced by the neuronal type and by the task that neurons perform as inferred from the comparison with other pyramidal and motor neuron populations.
Collapse
Affiliation(s)
- Patricia Perez-García
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain.,Department of Human Anatomy and Embriology, University of Cádiz, Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Carmen Castro
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Livia Carrascal
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
15
|
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021; 15:776809. [PMID: 34803599 PMCID: PMC8595945 DOI: 10.3389/fnins.2021.776809] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.
Collapse
Affiliation(s)
- Julia Reichard
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol 2021; 22:529-547. [PMID: 33990789 PMCID: PMC8663916 DOI: 10.1038/s41580-021-00366-6] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate). Here we propose four common principles, or pillars, that underlie all forms of directed migration. First, a signal must be generated, a process that in physiological environments is much more nuanced than early studies suggested. Second, the signal must be sensed, sometimes by cell surface receptors, but also in ways that are not entirely clear, such as in the case of mechanical cues. Third, the signal has to be transmitted from the sensing modules to the machinery that executes the actual movement, a step that often requires amplification. Fourth, the signal has to be converted into the application of asymmetric force relative to the substrate, which involves mostly the cytoskeleton, but perhaps other players as well. Use of these four pillars has allowed us to compare some of the similarities between different types of directed migration, but also to highlight the remarkable diversity in the mechanisms that cells use to respond to different cues provided by their environment.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Mastrototaro G, Zaghi M, Massimino L, Moneta M, Mohammadi N, Banfi F, Bellini E, Indrigo M, Fagnocchi G, Bagliani A, Taverna S, Rohm M, Herzig S, Sessa A. TBL1XR1 Ensures Balanced Neural Development Through NCOR Complex-Mediated Regulation of the MAPK Pathway. Front Cell Dev Biol 2021; 9:641410. [PMID: 33708771 PMCID: PMC7940385 DOI: 10.3389/fcell.2021.641410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
TBL1XR1 gene is associated with multiple developmental disorders presenting several neurological aspects. The relative protein is involved in the modulation of important cellular pathways and master regulators of transcriptional output, including nuclear receptor repressors, Wnt signaling, and MECP2 protein. However, TBL1XR1 mutations (including complete loss of its functions) have not been experimentally studied in a neurological context, leaving a knowledge gap in the mechanisms at the basis of the diseases. Here, we show that Tbl1xr1 knock-out mice exhibit behavioral and neuronal abnormalities. Either the absence of TBL1XR1 or its point mutations interfering with stability/regulation of NCOR complex induced decreased proliferation and increased differentiation in neural progenitors. We suggest that this developmental unbalance is due to a failure in the regulation of the MAPK cascade. Taken together, our results broaden the molecular and functional aftermath of TBL1XR1 deficiency associated with human disorders.
Collapse
Affiliation(s)
- Giuseppina Mastrototaro
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Moneta
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Neda Mohammadi
- Neurimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marzia Indrigo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Fagnocchi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Bagliani
- Medical Oncology Unit, ASST Ovest Milanese, Legnano Hospital, Legnano, Italy
| | - Stefano Taverna
- Neurimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Rohm
- Institute for Diabetes and Cancer IDC, Helmholtz Center, Munich, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Medical Faculty, Technical University Munich, Munich, Germany.,German Center for Diabetes Research, Oberschleissheim, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer IDC, Helmholtz Center, Munich, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Medical Faculty, Technical University Munich, Munich, Germany.,German Center for Diabetes Research, Oberschleissheim, Germany
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Fischer E, Morin X. Fate restrictions in embryonic neural progenitors. Curr Opin Neurobiol 2020; 66:178-185. [PMID: 33259983 DOI: 10.1016/j.conb.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
The vertebrate central nervous system (CNS) is a fantastically complex organ composed of dozens of cell types within the neural and glial lineages. Its organization is laid down during development, through the localized and sequential production of subsets of neurons with specific identities. The principles and mechanisms that underlie the timely production of adequate classes of cells are only partially understood. Recent advances in molecular profiling describe the developmental trajectories leading to this amazing cellular diversity and provide us with cell atlases of an unprecedented level of precision. Yet, some long-standing questions pertaining to lineage relationships between neural progenitor cells and their differentiated progeny remain unanswered. Here, we discuss questions related to proliferation potential, timing of fate choices and restriction of neuronal output potential of individual CNS progenitors through the lens of lineage relationship. Unlocking methodological barriers will be essential to accurately describe CNS development at a cellular resolution.
Collapse
Affiliation(s)
- Evelyne Fischer
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
19
|
Solanelles-Farré L, Telley L. New insights into CNS development from multiomics approaches. Curr Opin Neurobiol 2020; 66:116-124. [PMID: 33171340 DOI: 10.1016/j.conb.2020.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Our understanding of the central nervous system (CNS) development has been strongly enhanced by the recent progress of single-cell multiomics approaches. Certainly, the multiplex profiling of individual cell epigenomes and transcriptomes together with dynamic lineage tracing systems brings encouraging new perspectives and prompts a paradigm shift in neuroscience developmental research. In this review, we outline the latest multiomics -based findings in CNS development, from the early CNS patterning to the regional specification of the CNS along anterior-posterior axis (forebrain, midbrain, hindbrain and spinal cord). Overall, multiomics development has substantially impacted current knowledge and has challenged our classical models for embryonic CNS development. Integrating all these newly generated -omics databases represents the next step to overcome challenges in understanding developmental diseases.
Collapse
Affiliation(s)
| | - Ludovic Telley
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
20
|
Severino M, Geraldo AF, Utz N, Tortora D, Pogledic I, Klonowski W, Triulzi F, Arrigoni F, Mankad K, Leventer RJ, Mancini GMS, Barkovich JA, Lequin MH, Rossi A. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020; 143:2874-2894. [PMID: 32779696 PMCID: PMC7586092 DOI: 10.1093/brain/awaa174] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Malformations of cortical development are a group of rare disorders commonly manifesting with developmental delay, cerebral palsy or seizures. The neurological outcome is extremely variable depending on the type, extent and severity of the malformation and the involved genetic pathways of brain development. Neuroimaging plays an essential role in the diagnosis of these malformations, but several issues regarding malformations of cortical development definitions and classification remain unclear. The purpose of this consensus statement is to provide standardized malformations of cortical development terminology and classification for neuroradiological pattern interpretation. A committee of international experts in paediatric neuroradiology prepared systematic literature reviews and formulated neuroimaging recommendations in collaboration with geneticists, paediatric neurologists and pathologists during consensus meetings in the context of the European Network Neuro-MIG initiative on Brain Malformations (https://www.neuro-mig.org/). Malformations of cortical development neuroimaging features and practical recommendations are provided to aid both expert and non-expert radiologists and neurologists who may encounter patients with malformations of cortical development in their practice, with the aim of improving malformations of cortical development diagnosis and imaging interpretation worldwide.
Collapse
Affiliation(s)
| | - Ana Filipa Geraldo
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Neuroradiology Unit, Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho (CHVNG/E), Vila Nova de Gaia, Portugal
| | - Norbert Utz
- Department of Pediatric Radiology, HELIOS Klinikum Krefeld, Germany
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland
| | - Fabio Triulzi
- Neuroradiology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi Milano, Italy
| | - Filippo Arrigoni
- Department of Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, UK
| | - Richard J Leventer
- Department of Neurology Royal Children’s Hospital, Murdoch Children’s Research Institute and University of Melbourne Department of Pediatrics, Melbourne, Australia
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - James A Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Maarten H Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
21
|
Jungas T, Joseph M, Fawal MA, Davy A. Population Dynamics and Neuronal Polyploidy in the Developing Neocortex. Cereb Cortex Commun 2020; 1:tgaa063. [PMID: 34296126 PMCID: PMC8152829 DOI: 10.1093/texcom/tgaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022] Open
Abstract
The mammalian neocortex is composed of different subtypes of projection neurons that are generated sequentially during embryogenesis by differentiation of neural progenitors. While molecular mechanisms that control neuronal production in the developing neocortex have been extensively studied, the dynamics and absolute numbers of the different progenitor and neuronal populations are still poorly characterized. Here, we describe a medium throughput approach based on flow cytometry and well-known identity markers of cortical subpopulations to collect quantitative data over the course of mouse neocortex development. We collected a complete dataset in a physiological developmental context on two progenitor and two neuron populations, including relative proportions and absolute numbers. Our study reveals unexpected total numbers of Tbr2+ progenitors. In addition, we show that polyploid neurons are present throughout neocortex development.
Collapse
Affiliation(s)
- Thomas Jungas
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Mathieu Joseph
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
22
|
Baburamani AA, Vontell RT, Uus A, Pietsch M, Patkee PA, Wyatt-Ashmead J, Chin-Smith EC, Supramaniam VG, Donald Tournier J, Deprez M, Rutherford MA. Assessment of radial glia in the frontal lobe of fetuses with Down syndrome. Acta Neuropathol Commun 2020; 8:141. [PMID: 32819430 PMCID: PMC7441567 DOI: 10.1186/s40478-020-01015-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS) occurs with triplication of human chromosome 21 and is associated with deviations in cortical development evidenced by simplified gyral appearance and reduced cortical surface area. Radial glia are neuronal and glial progenitors that also create a scaffolding structure essential for migrating neurons to reach cortical targets and therefore play a critical role in cortical development. The aim of this study was to characterise radial glial expression pattern and morphology in the frontal lobe of the developing human fetal brain with DS and age-matched controls. Secondly, we investigated whether microstructural information from in vivo magnetic resonance imaging (MRI) could reflect histological findings from human brain tissue samples. Immunohistochemistry was performed on paraffin-embedded human post-mortem brain tissue from nine fetuses and neonates with DS (15-39 gestational weeks (GW)) and nine euploid age-matched brains (18-39 GW). Radial glia markers CRYAB, HOPX, SOX2, GFAP and Vimentin were assessed in the Ventricular Zone, Subventricular Zone and Intermediate Zone. In vivo diffusion MRI was used to assess microstructure in these regions in one DS (21 GW) and one control (22 GW) fetal brain. We found a significant reduction in radial glial progenitor SOX2 and subtle deviations in radial glia expression (GFAP and Vimentin) prior to 24 GW in DS. In vivo, fetal MRI demonstrates underlying radial projections consistent with immunohistopathology. Radial glial alterations may contribute to the subsequent simplified gyral patterns and decreased cortical volumes observed in the DS brain. Recent advances in fetal MRI acquisition and analysis could provide non-invasive imaging-based biomarkers of early developmental deviations.
Collapse
Affiliation(s)
- Ana A. Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Regina T. Vontell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- University of Miami Brain Endowment Bank, Miami, FL 33136 USA
| | - Alena Uus
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Prachi A. Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Jo Wyatt-Ashmead
- Neuropathology and Pediatric-Perinatal Pathology Service [NaPPPS], Holly Springs, MS 38635 USA
| | - Evonne C. Chin-Smith
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Veena G. Supramaniam
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - J. Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Maria Deprez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Mary A. Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| |
Collapse
|
23
|
Mechanisms of axon polarization in pyramidal neurons. Mol Cell Neurosci 2020; 107:103522. [PMID: 32653476 DOI: 10.1016/j.mcn.2020.103522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Neurons are highly polarized cells that have specialized regions for synaptic input, the dendrites, and synaptic output, the axons. This polarity is critical for appropriate neural circuit formation and function. One of the central gaps in our knowledge is understanding how developing neurons initiate axon polarity. Given the critical nature of this polarity on neural circuit formation and function, neurons have evolved multiple mechanisms comprised of extracellular and intracellular cues that allow them to initiate and form axons. These mechanisms engage a variety of signaling cascades that provide positive and negative cues to ensure axon polarization. This review highlights our current knowledge of the molecular underpinnings of axon polarization in pyramidal neurons and their relevance to the development of the brain.
Collapse
|
24
|
Surzenko N, Pjetri E, Munson CA, Friday WB, Hauser J, Mitchell ES. Prenatal exposure to the probiotic Lactococcus lactis decreases anxiety-like behavior and modulates cortical cytoarchitecture in a sex specific manner. PLoS One 2020; 15:e0223395. [PMID: 32645024 PMCID: PMC7347133 DOI: 10.1371/journal.pone.0223395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Development of the cerebral cortex may be influenced by the composition of the maternal gut microbiota. To test this possibility, we administered probiotic Lactococcus lactis in drinking water to mouse dams from day 10.5 of gestation until pups reached postnatal day 1 (P1). Pups were assessed in a battery of behavioral tests starting at 10 weeks old. We found that females, but not males, exposed to probiotic during prenatal development spent more time in the center of the open field and displayed decreased freezing time in cue associated learning, compared to controls. Furthermore, we found that probiotic exposure changed the density of cortical neurons and increased the density of blood vessels in the cortical plate of P1 pups. Sex-specific differences were observed in the number of mitotic neural progenitor cells, which were increased in probiotic exposed female pups. In addition, we found that probiotic treatment in the latter half of pregnancy significantly increased plasma oxytocin levels in mouse dams, but not in the offspring. These results suggest that exposure of naïve, unstressed dams to probiotic may exert sex-specific long-term effects on cortical development and anxiety related behavior in the offspring.
Collapse
Affiliation(s)
- Natalia Surzenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States of America
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Eneda Pjetri
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States of America
| | - Carolyn A. Munson
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States of America
| | - Walter B. Friday
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States of America
| | - Jonas Hauser
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | | |
Collapse
|