1
|
Avellaneda-Tamayo JF, Agudo-Muñoz NA, Sánchez-Galán JE, López-Pérez JL, Medina-Franco JL. Chemoinformatic Characterization of NAPROC-13: A Database for Natural Product 13C NMR Dereplication. JOURNAL OF NATURAL PRODUCTS 2024; 87:2216-2229. [PMID: 39269718 PMCID: PMC11443490 DOI: 10.1021/acs.jnatprod.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Natural products (NPs) are secondary metabolites of natural origin with broad applications across various human activities, particularly the discovery of bioactive compounds. Structural elucidation of new NPs entails significant cost and effort. On the other hand, the dereplication of known compounds is crucial for the early exclusion of irrelevant compounds in contemporary pharmaceutical research. NAPROC-13 stands out as a publicly accessible database, providing structural and 13C NMR spectroscopic information for over 25 000 compounds, rendering it a pivotal resource in natural product (NP) research, favoring open science. This study seeks to quantitatively analyze the chemical content, structural diversity, and chemical space coverage of NPs within NAPROC-13, compared to FDA-approved drugs and a very diverse subset of NPs, UNPD-A. Findings indicated that NPs in NAPROC-13 exhibit properties comparable to those in UNPD-A, albeit showcasing a notably diverse array of structural content, scaffolds, ring systems of pharmaceutical interest, and molecular fragments. NAPROC-13 covers a specific region of the chemical multiverse (a generalization of the chemical space from different chemical representations) regarding physicochemical properties and a region as broad as UNPD-A in terms of the structural features represented by fingerprints.
Collapse
Affiliation(s)
- Juan F. Avellaneda-Tamayo
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Naicolette A. Agudo-Muñoz
- Science
and Technology Faculty, Universidad Tecnológica de Panamá,
Campus Metropolitano Víctor Levi Sasso, Avenida Universidad Tecnológica, Vía Puente Centenario, Panama City 0819-07289, Panama
- Grupo
de Investigación en Biotecnología, Bioinformática
y Biología de Sistemas (GIBBS), Universidad Tecnológica
de Panama, Panama City, Panama
| | - Javier E. Sánchez-Galán
- Facultad
de Ingeniería de Sistemas Computacionales, Universidad Tecnológica
de Panamá, Campus Metropolitano Víctor Levi Sasso, Avenida Universidad Tecnológica, Vía
Puente Centenario, Panama City 0819-07289, Panama
- Grupo
de Investigación en Biotecnología, Bioinformática
y Biología de Sistemas (GIBBS), Universidad Tecnológica
de Panama, Panama City, Panama
| | - José L. López-Pérez
- Departamento
de Ciencias Farmacéuticas, Área de Química Farmacéutica,
Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain
- Departamento
de Farmacología, Facultad de Medicina, CIPFAR, Universidad de Panamá, Panama City, Panama
| | - José L. Medina-Franco
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Avellaneda-Tamayo JF, Chávez-Hernández AL, Prado-Romero DL, Medina-Franco JL. Chemical Multiverse and Diversity of Food Chemicals. J Chem Inf Model 2024; 64:1229-1244. [PMID: 38356237 PMCID: PMC10900296 DOI: 10.1021/acs.jcim.3c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Food chemicals have a fundamental role in our lives, with an extended impact on nutrition, disease prevention, and marked economic implications in the food industry. The number of food chemical compounds in public databases has substantially increased in the past few years, which can be characterized using chemoinformatics approaches. We and other groups explored public food chemical libraries containing up to 26,500 compounds. This study aimed to analyze the chemical contents, diversity, and coverage in the chemical space of food chemicals and additives and, from here on, food components. The approach to food components addressed in this study is a public database with more than 70,000 compounds, including those predicted via omics techniques. It was concluded that food components have distinctive physicochemical properties and constitutional descriptors despite sharing many chemical structures with natural products. Food components, on average, have large molecular weights and several apolar structures with saturated hydrocarbons. Compared to reference databases, food component structures have low scaffold and fingerprint-based diversity and high structural complexity, as measured by the fraction of sp3 carbons. These structural features are associated with a large fraction of macronutrients as lipids. Lipids in food components were decompiled by an analysis of the maximum common substructures. The chemical multiverse representation of food chemicals showed a larger coverage of chemical space than natural products and FDA-approved drugs by using different sets of representations.
Collapse
Affiliation(s)
- Juan F. Avellaneda-Tamayo
- DIFACQUIM Research Group, Department
of Pharmacy, School of Chemistry, Universidad
Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Ana L. Chávez-Hernández
- DIFACQUIM Research Group, Department
of Pharmacy, School of Chemistry, Universidad
Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Diana L. Prado-Romero
- DIFACQUIM Research Group, Department
of Pharmacy, School of Chemistry, Universidad
Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department
of Pharmacy, School of Chemistry, Universidad
Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Gómez-García A, Jiménez DAA, Zamora WJ, Barazorda-Ccahuana HL, Chávez-Fumagalli MÁ, Valli M, Andricopulo AD, Bolzani VDS, Olmedo DA, Solís PN, Núñez MJ, Rodríguez Pérez JR, Valencia Sánchez HA, Cortés Hernández HF, Medina-Franco JL. Navigating the Chemical Space and Chemical Multiverse of a Unified Latin American Natural Product Database: LANaPDB. Pharmaceuticals (Basel) 2023; 16:1388. [PMID: 37895859 PMCID: PMC10609821 DOI: 10.3390/ph16101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The number of databases of natural products (NPs) has increased substantially. Latin America is extraordinarily rich in biodiversity, enabling the identification of novel NPs, which has encouraged both the development of databases and the implementation of those that are being created or are under development. In a collective effort from several Latin American countries, herein we introduce the first version of the Latin American Natural Products Database (LANaPDB), a public compound collection that gathers the chemical information of NPs contained in diverse databases from this geographical region. The current version of LANaPDB unifies the information from six countries and contains 12,959 chemical structures. The structural classification showed that the most abundant compounds are the terpenoids (63.2%), phenylpropanoids (18%) and alkaloids (11.8%). From the analysis of the distribution of properties of pharmaceutical interest, it was observed that many LANaPDB compounds satisfy some drug-like rules of thumb for physicochemical properties. The concept of the chemical multiverse was employed to generate multiple chemical spaces from two different fingerprints and two dimensionality reduction techniques. Comparing LANaPDB with FDA-approved drugs and the major open-access repository of NPs, COCONUT, it was concluded that the chemical space covered by LANaPDB completely overlaps with COCONUT and, in some regions, with FDA-approved drugs. LANaPDB will be updated, adding more compounds from each database, plus the addition of databases from other Latin American countries.
Collapse
Affiliation(s)
- Alejandro Gómez-García
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México Avenida Universidad 3000, Mexico City 04510, Mexico;
| | - Daniel A. Acuña Jiménez
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica; (D.A.A.J.); (W.J.Z.)
| | - William J. Zamora
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica; (D.A.A.J.); (W.J.Z.)
- Laboratory of Computational Toxicology and Artificial Intelligence (LaToxCIA), Biological Testing Laboratory (LEBi), University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
- Advanced Computing Lab (CNCA), National High Technology Center (CeNAT), Pavas, San José 1174-1200, Costa Rica
| | - Haruna L. Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa Maria, Arequipa 04000, Peru; (H.L.B.-C.); (M.Á.C.-F.)
| | - Miguel Á. Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa Maria, Arequipa 04000, Peru; (H.L.B.-C.); (M.Á.C.-F.)
| | - Marilia Valli
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.V.); (A.D.A.)
| | - Adriano D. Andricopulo
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.V.); (A.D.A.)
| | - Vanderlan da S. Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Av. Prof. Francisco Degni, 55, Araraquara 14800-900, SP, Brazil;
| | - Dionisio A. Olmedo
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De Fabrega, Panama City 3366, Panama; (D.A.O.); (P.N.S.)
| | - Pablo N. Solís
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De Fabrega, Panama City 3366, Panama; (D.A.O.); (P.N.S.)
| | - Marvin J. Núñez
- Natural Product Research Laboratory, School of Chemistry and Pharmacy, University of El Salvador, Final Ave. Mártires Estudiantes del 30 de Julio, San Salvador 01101, El Salvador;
| | - Johny R. Rodríguez Pérez
- GIFES Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.R.R.P.); (H.A.V.S.); (H.F.C.H.)
- GIEPRONAL Research Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia, Dosquebradas 661001, Colombia
| | - Hoover A. Valencia Sánchez
- GIFES Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.R.R.P.); (H.A.V.S.); (H.F.C.H.)
| | - Héctor F. Cortés Hernández
- GIFES Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.R.R.P.); (H.A.V.S.); (H.F.C.H.)
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México Avenida Universidad 3000, Mexico City 04510, Mexico;
| |
Collapse
|
4
|
Bajorath J, Chávez-Hernández AL, Duran-Frigola M, Fernández-de Gortari E, Gasteiger J, López-López E, Maggiora GM, Medina-Franco JL, Méndez-Lucio O, Mestres J, Miranda-Quintana RA, Oprea TI, Plisson F, Prieto-Martínez FD, Rodríguez-Pérez R, Rondón-Villarreal P, Saldívar-Gonzalez FI, Sánchez-Cruz N, Valli M. Chemoinformatics and artificial intelligence colloquium: progress and challenges in developing bioactive compounds. J Cheminform 2022; 14:82. [PMID: 36461094 PMCID: PMC9716667 DOI: 10.1186/s13321-022-00661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
We report the main conclusions of the first Chemoinformatics and Artificial Intelligence Colloquium, Mexico City, June 15-17, 2022. Fifteen lectures were presented during a virtual public event with speakers from industry, academia, and non-for-profit organizations. Twelve hundred and ninety students and academics from more than 60 countries. During the meeting, applications, challenges, and opportunities in drug discovery, de novo drug design, ADME-Tox (absorption, distribution, metabolism, excretion and toxicity) property predictions, organic chemistry, peptides, and antibiotic resistance were discussed. The program along with the recordings of all sessions are freely available at https://www.difacquim.com/english/events/2022-colloquium/ .
Collapse
Affiliation(s)
- Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, 53113, Bonn, Germany
| | - Ana L Chávez-Hernández
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Miquel Duran-Frigola
- Ersilia Open Source Initiative, Cambridge, UK
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Eli Fernández-de Gortari
- Nanosafety Laboratory, International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal
| | - Johann Gasteiger
- Computer-Chemie-Centrum, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), 07360, Mexico City, Mexico
| | | | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | | | - Jordi Mestres
- Chemotargets SL, Baldiri Reixac 4, Parc Cientific de Barcelona (PCB), 08028, Barcelona, Catalonia, Spain
- Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra, Parc de Recerca Biomedica (PRBB), 08003, Barcelona, Catalonia, Spain
| | | | - Tudor I Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, 40530, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Roivant Discovery Sciences, Inc., 451 D Street, Boston, MA, 02210, USA
| | - Fabien Plisson
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Gto, Mexico
| | | | | | - Paola Rondón-Villarreal
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Calle 70 No. 55-210, 680003, Santander, Bucaramanga, Colombia
| | - Fernanda I Saldívar-Gonzalez
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Norberto Sánchez-Cruz
- Chemotargets SL, Baldiri Reixac 4, Parc Cientific de Barcelona (PCB), 08028, Barcelona, Catalonia, Spain
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Yucatán, 97357, Ucú, Mexico
| | - Marilia Valli
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
5
|
Progress and Impact of Latin American Natural Product Databases. Biomolecules 2022; 12:biom12091202. [PMID: 36139041 PMCID: PMC9496143 DOI: 10.3390/biom12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) are a rich source of structurally novel molecules, and the chemical space they encompass is far from being fully explored. Over history, NPs have represented a significant source of bioactive molecules and have served as a source of inspiration for developing many drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed to drug discovery research, mitigating costs and time. In this sense, compound databases represent a fundamental element of CADD. This work reviews the progress toward developing compound databases of natural origin, and it surveys computational methods, emphasizing chemoinformatic approaches to profile natural product databases. Furthermore, it reviews the present state of the art in developing Latin American NP databases and their practical applications to the drug discovery area.
Collapse
|
6
|
Sánchez-Cruz N, Medina-Franco JL. Epigenetic Target Fishing with Accurate Machine Learning Models. J Med Chem 2021; 64:8208-8220. [PMID: 33770434 DOI: 10.1021/acs.jmedchem.1c00020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetic targets are of significant importance in drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents many structure-activity relationships that have not been exploited thus far to develop predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26 318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. We built predictive models with high accuracy for small molecules' epigenetic target profiling through a systematic comparison of the machine learning models trained on different molecular fingerprints. The models were thoroughly validated, showing mean precisions of up to 0.952 for the epigenetic target prediction task. Our results indicate that the models reported herein have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as a freely accessible web application.
Collapse
Affiliation(s)
- Norberto Sánchez-Cruz
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Durán-Iturbide N, Díaz-Eufracio BI, Medina-Franco JL. In Silico ADME/Tox Profiling of Natural Products: A Focus on BIOFACQUIM. ACS OMEGA 2020; 5:16076-16084. [PMID: 32656429 PMCID: PMC7346235 DOI: 10.1021/acsomega.0c01581] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 05/16/2023]
Abstract
Natural products continue to be major sources of bioactive compounds and drug candidates not only because of their unique chemical structures but also because of their overall favorable metabolism and pharmacokinetic properties. The number of publicly accessible natural product databases has increased significantly in the past few years. However, the systematic ADME/Tox profile has been reported on a limited basis. For instance, BIOFACQUIM was recently published as a public database of natural products from Mexico, a country with a rich source of biomolecules. However, its ADME/Tox profile has not been reported. Herein, we discuss the results of an in-depth in silico ADME/Tox profile of natural products in BIOFACQUIM and other large public collections of natural products. It was concluded that the absorption and distribution profiles of compounds in BIOFACQUIM are similar to those of approved drugs, while the metabolism profile is comparable to that in the other natural product databases. The excretion profile of compounds in BIOFACQUIM is different from that of the approved drugs, but their predicted toxicity profile is comparable. This work further contributes to the deeper characterization of natural product collections as major sources of bioactive compounds with therapeutic potential.
Collapse
Affiliation(s)
- Noemi
Angeles Durán-Iturbide
- School of Chemistry, Department
of Pharmacy, National Autonomous University of Mexico, Avenida Universidad 3000, 04510 Mexico City, Mexico
| | - Bárbara I. Díaz-Eufracio
- School of Chemistry, Department
of Pharmacy, National Autonomous University of Mexico, Avenida Universidad 3000, 04510 Mexico City, Mexico
| | - José L. Medina-Franco
- School of Chemistry, Department
of Pharmacy, National Autonomous University of Mexico, Avenida Universidad 3000, 04510 Mexico City, Mexico
| |
Collapse
|