1
|
Stubberud A, Langseth H, Nachev P, Matharu MS, Tronvik E. Artificial intelligence and headache. Cephalalgia 2024; 44:3331024241268290. [PMID: 39099427 DOI: 10.1177/03331024241268290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
BACKGROUND AND METHODS In this narrative review, we introduce key artificial intelligence (AI) and machine learning (ML) concepts, aimed at headache clinicians and researchers. Thereafter, we thoroughly review the use of AI in headache, based on a comprehensive literature search across PubMed, Embase and IEEExplore. Finally, we discuss limitations, as well as ethical and political perspectives. RESULTS We identified six main research topics. First, natural language processing can be used to effectively extract and systematize unstructured headache research data, such as from electronic health records. Second, the most common application of ML is for classification of headache disorders, typically based on clinical record data, or neuroimaging data, with accuracies ranging from around 60% to well over 90%. Third, ML is used for prediction of headache disease trajectories. Fourth, ML shows promise in forecasting of headaches using self-reported data such as triggers and premonitory symptoms, data from wearable sensors and external data. Fifth and sixth, ML can be used for prediction of treatment responses and inference of treatment effects, respectively, aiming to optimize and individualize headache management. CONCLUSIONS The potential uses of AI and ML in headache are broad, but, at present, many studies suffer from poor reporting and lack out-of-sample evaluation, and most models are not validated in a clinical setting.
Collapse
Affiliation(s)
- Anker Stubberud
- NorHead Norwegian Centre for Headache Research, Trondheim, Norway
- Department of Neuromedicine and Movement Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Helge Langseth
- NorHead Norwegian Centre for Headache Research, Trondheim, Norway
- Department of Computer Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Parashkev Nachev
- High Dimensional Neurology Group, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manjit S Matharu
- NorHead Norwegian Centre for Headache Research, Trondheim, Norway
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Erling Tronvik
- NorHead Norwegian Centre for Headache Research, Trondheim, Norway
- Department of Neuromedicine and Movement Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, Neuroclinic, StOlav University Hospital, Trondheim, Norway
| |
Collapse
|
2
|
Khan L, Shahreen M, Qazi A, Jamil Ahmed Shah S, Hussain S, Chang HT. Migraine headache (MH) classification using machine learning methods with data augmentation. Sci Rep 2024; 14:5180. [PMID: 38431729 PMCID: PMC10908834 DOI: 10.1038/s41598-024-55874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Migraine headache, a prevalent and intricate neurovascular disease, presents significant challenges in its clinical identification. Existing techniques that use subjective pain intensity measures are insufficiently accurate to make a reliable diagnosis. Even though headaches are a common condition with poor diagnostic specificity, they have a significant negative influence on the brain, body, and general human function. In this era of deeply intertwined health and technology, machine learning (ML) has emerged as a crucial force in transforming every aspect of healthcare, utilizing advanced facilities ML has shown groundbreaking achievements related to developing classification and automatic predictors. With this, deep learning models, in particular, have proven effective in solving complex problems spanning computer vision and data analytics. Consequently, the integration of ML in healthcare has become vital, especially in developing countries where limited medical resources and lack of awareness prevail, the urgent need to forecast and categorize migraines using artificial intelligence (AI) becomes even more crucial. By training these models on a publicly available dataset, with and without data augmentation. This study focuses on leveraging state-of-the-art ML algorithms, including support vector machine (SVM), K-nearest neighbors (KNN), random forest (RF), decision tree (DST), and deep neural networks (DNN), to predict and classify various types of migraines. The proposed models with data augmentations were trained to classify seven various types of migraine. The proposed models with data augmentations were trained to classify seven various types of migraine. The revealed results show that DNN, SVM, KNN, DST, and RF achieved an accuracy of 99.66%, 94.60%, 97.10%, 88.20%, and 98.50% respectively with data augmentation highlighting the transformative potential of AI in enhancing migraine diagnosis.
Collapse
Affiliation(s)
- Lal Khan
- Department of Computer Science, Ibadat International University Islamabad Pakpattan Campus, Pakpattan, Pakistan
| | - Moudasra Shahreen
- Department of Computer Science, Mir Chakar Khan Rind University, Sibi, Pakistan
| | - Atika Qazi
- Centre for Lifelong Learning, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | | | - Sabir Hussain
- Department of Agriculture, Mir Chakar Khan Rind University, Sibi, Pakistan
| | - Hsien-Tsung Chang
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan.
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan.
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Torrente A, Maccora S, Prinzi F, Alonge P, Pilati L, Lupica A, Di Stefano V, Camarda C, Vitabile S, Brighina F. The Clinical Relevance of Artificial Intelligence in Migraine. Brain Sci 2024; 14:85. [PMID: 38248300 PMCID: PMC10813497 DOI: 10.3390/brainsci14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Migraine is a burdensome neurological disorder that still lacks clear and easily accessible diagnostic biomarkers. Furthermore, a straightforward pathway is hard to find for migraineurs' management, so the search for response predictors has become urgent. Nowadays, artificial intelligence (AI) has pervaded almost every aspect of our lives, and medicine has not been missed. Its applications are nearly limitless, and the ability to use machine learning approaches has given researchers a chance to give huge amounts of data new insights. When it comes to migraine, AI may play a fundamental role, helping clinicians and patients in many ways. For example, AI-based models can increase diagnostic accuracy, especially for non-headache specialists, and may help in correctly classifying the different groups of patients. Moreover, AI models analysing brain imaging studies reveal promising results in identifying disease biomarkers. Regarding migraine management, AI applications showed value in identifying outcome measures, the best treatment choices, and therapy response prediction. In the present review, the authors introduce the various and most recent clinical applications of AI regarding migraine.
Collapse
Affiliation(s)
- Angelo Torrente
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (A.T.); (S.M.); (F.P.); (P.A.); (L.P.); (A.L.); (V.D.S.); (C.C.); (S.V.)
| | - Simona Maccora
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (A.T.); (S.M.); (F.P.); (P.A.); (L.P.); (A.L.); (V.D.S.); (C.C.); (S.V.)
- Neurology Unit, ARNAS Civico di Cristina and Benfratelli Hospitals, 90127 Palermo, Italy
| | - Francesco Prinzi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (A.T.); (S.M.); (F.P.); (P.A.); (L.P.); (A.L.); (V.D.S.); (C.C.); (S.V.)
- Department of Computer Science and Technology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Paolo Alonge
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (A.T.); (S.M.); (F.P.); (P.A.); (L.P.); (A.L.); (V.D.S.); (C.C.); (S.V.)
| | - Laura Pilati
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (A.T.); (S.M.); (F.P.); (P.A.); (L.P.); (A.L.); (V.D.S.); (C.C.); (S.V.)
- Neurology and Stroke Unit, P.O. “S. Antonio Abate”, 91016 Trapani, Italy
| | - Antonino Lupica
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (A.T.); (S.M.); (F.P.); (P.A.); (L.P.); (A.L.); (V.D.S.); (C.C.); (S.V.)
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (A.T.); (S.M.); (F.P.); (P.A.); (L.P.); (A.L.); (V.D.S.); (C.C.); (S.V.)
| | - Cecilia Camarda
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (A.T.); (S.M.); (F.P.); (P.A.); (L.P.); (A.L.); (V.D.S.); (C.C.); (S.V.)
| | - Salvatore Vitabile
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (A.T.); (S.M.); (F.P.); (P.A.); (L.P.); (A.L.); (V.D.S.); (C.C.); (S.V.)
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (A.T.); (S.M.); (F.P.); (P.A.); (L.P.); (A.L.); (V.D.S.); (C.C.); (S.V.)
| |
Collapse
|
4
|
Li X, Yu X, Tian D, Liu Y, Li D. Exploring and validating the prognostic value of pathomics signatures and genomics in patients with cutaneous melanoma based on bioinformatics and deep learning. Med Phys 2023; 50:7049-7059. [PMID: 37722701 DOI: 10.1002/mp.16748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Cutaneous melanoma (CM) is the most common malignant tumor of the skin. Our study aimed to investigate the prognostic value of pathomics signatures for CM by combining pathomics and genomics. PURPOSE The purpose of this study was to explore the potential application value of pathomics signatures. METHODS Pathology full scans, clinical information, and genomics data for CM patients were downloaded from The Cancer Genome Atlas (TCGA) database. Exploratory data analysis (EDA) was used to visualize patient characteristics. Genes related to a poorer prognosis were screened through differential analysis. Survival analysis was performed to assess the prognostic value of gene and pathomics signatures. Artificial neural network (ANN) models predicted prognosis using signatures and genes. Correlation analysis was used to explore signature-gene links. RESULTS The clinical traits for 468 CM samples and the genomic data and pathology images for 471 CM samples were obtained from the TCGA database. The EDA results combined with multiple machine learning (ML) models suggested that the top 5 clinical traits in terms of importance were age, biopsy site, T stage, N stage and overall disease stage, and the eight ML models had a precision lower than 0.56. A total of 60 differentially expressed genes were obtained by comparing sequencing data. A total of 413 available quantitative signatures of each pathomics image were obtained with CellProfile software. The precision of the binary classification model based on pathomics signatures was 0.99, with a loss value of 1.7119e-04. The precision of the binary classification model based on differentially expressed genes was 0.98, with a loss value of 0.1101. The precision of the binary classification model based on pathomics signatures and differentially expressed genes was 0.97, with a loss value of 0.2088. The survival analyses showed that the survival rate of the high-risk group based on gene expression and pathomics signatures was significantly lower than that of the low-risk group. A total of 222 pathomics signatures and 51 differentially expressed genes were analyzed for survival with p-values of less than 0.05. There was a certain correlation between some pathomics signatures and differential gene expression involving ANO2, LINC00158, NDNF, ADAMTS15, and ADGRB3, etc. CONCLUSION: This study evaluated the prognostic significance of pathomics signatures and differentially expressed genes in CM patients. Three ANN models were developed, and all achieved accuracy rates higher than 97%. Specifically, the pathomics signature-based ANN model maintained a remarkable accuracy of 99%. These findings highlight the CellProfile + ANN model as an excellent choice for prognostic prediction in CM patients. Furthermore, our correlation analysis experimentally demonstrated a preliminary link between disease quantification and qualitative changes. Among various features, including M stage and treatments received, special attention should be given to age, biopsy site, T stage, N stage, and overall disease stage in CM patients.
Collapse
Affiliation(s)
- Xiaoyuan Li
- Department of Traditional Chinese Medicine, The affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoqian Yu
- Department of Dermatology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Duanliang Tian
- Department of Tuina, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Yiran Liu
- Department of Traditional Chinese Medicine, Weifang Medical College, Weifang, Shandong, China
| | - Ding Li
- Department of Traditional Chinese Medicine, The affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Mitrović K, Petrušić I, Radojičić A, Daković M, Savić A. Migraine with aura detection and subtype classification using machine learning algorithms and morphometric magnetic resonance imaging data. Front Neurol 2023; 14:1106612. [PMID: 37441607 PMCID: PMC10333052 DOI: 10.3389/fneur.2023.1106612] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Migraine with aura (MwA) is a neurological condition manifested in moderate to severe headaches associated with transient visual and somatosensory symptoms, as well as higher cortical dysfunctions. Considering that about 5% of the world's population suffers from this condition and manifestation could be abundant and characterized by various symptoms, it is of great importance to focus on finding new and advanced techniques for the detection of different phenotypes, which in turn, can allow better diagnosis, classification, and biomarker validation, resulting in tailored treatments of MwA patients. Methods This research aimed to test different machine learning techniques to distinguish healthy people from those suffering from MwA, as well as people with simple MwA and those experiencing complex MwA. Magnetic resonance imaging (MRI) post-processed data (cortical thickness, cortical surface area, cortical volume, cortical mean Gaussian curvature, and cortical folding index) was collected from 78 subjects [46 MwA patients (22 simple MwA and 24 complex MwA) and 32 healthy controls] with 340 different features used for the algorithm training. Results The results show that an algorithm based on post-processed MRI data yields a high classification accuracy (97%) of MwA patients and precise distinction between simple MwA and complex MwA with an accuracy of 98%. Additionally, the sets of features relevant to the classification were identified. The feature importance ranking indicates the thickness of the left temporal pole, right lingual gyrus, and left pars opercularis as the most prominent markers for MwA classification, while the thickness of left pericalcarine gyrus and left pars opercularis are proposed as the two most important features for the simple and complex MwA classification. Discussion This method shows significant potential in the validation of MwA diagnosis and subtype classification, which can tackle and challenge the current treatments of MwA.
Collapse
Affiliation(s)
- Katarina Mitrović
- Department of Information Technologies, Faculty of Technical Sciences in Čačak, University of Kragujevac, Čačak, Serbia
| | - Igor Petrušić
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Radojičić
- Headache Center, Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Daković
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Andrej Savić
- Science and Research Centre, School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Daripa B, Lucchese S. Artificial Intelligence-Aided Headache Classification Based on a Set of Questionnaires: A Short Review. Cureus 2022; 14:e29514. [PMID: 36299975 PMCID: PMC9588408 DOI: 10.7759/cureus.29514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Wielding modern technology in the form of artificial intelligence (AI) or deep learning (DL) can utilize the best possible latest computer application in intricate decision-making and enigmatic problem-solving. It has been recommended in many fields. However, it is a long way from achieving an ambitious genuine intention when it comes to understanding and identifying any headache condition or classification, and using it error-free. No studies hitherto formalized any headache AI models to accurately classify headaches. A machine’s job can be arduous when incorporating an emotional dimension in decision making, re-challenging its own diagnosis by keeping a differential at all times, where even experienced neurologists or headache experts sometimes find it demanding to make a precise analysis and formulate a methodical plan. This could be because of spanning clinical presentation at a given moment of time or a change in clinical pattern over time which apparently could be due to intercrossing multiple pathophysiologies. We did a short literature review on the role of artificial intelligence and machine learning in headache classification. This brings forth a minuscule insight into the vastness of headaches and the perpetual effort and exploration headache may demand from AI when trying to scrutinize its classification. Undoubtedly, AI or DL could better be utilized in identifying the red flags of headache, as it might help our patients at home or the primary care physicians/practicing doctors/non- neurologists in their clinic to triage the headache patients if they need an imperative higher center referral to a neurologist for advanced evaluation. This outlook can limit the burden on a handful of headache specialists by minimizing the referrals to a tertiary care setting.
Collapse
|
7
|
Abstract
Pain is a complex term that describes various sensations that create discomfort in various ways or types inside the human body. Generally, pain has consequences that range from mild to severe in different organs of the body and will depend on the way it is caused, which could be an injury, illness or medical procedures including testing, surgeries or therapies, etc. With recent advances in artificial-intelligence (AI) systems associated in biomedical and healthcare settings, the contiguity of physician, clinician and patient has shortened. AI, however, has more scope to interpret the pain associated in patients with various conditions by using any physiological or behavioral changes. Facial expressions are considered to give much information that relates with emotions and pain, so clinicians consider these changes with high importance for assessing pain. This has been achieved in recent times with different machine-learning and deep-learning models. To accentuate the future scope and importance of AI in medical field, this study reviews the explainable AI (XAI) as increased attention is given to an automatic assessment of pain. This review discusses how these approaches are applied for different pain types.
Collapse
|