1
|
Chen L, Zhou K, Shi J, Zheng Y, Zhao X, Du Q, Lin Y, Yin X, Jiang J, Feng X. Pyrethroid resistance status and co-occurrence of V1016G, F1534C and S989P mutations in the Aedes aegypti population from two dengue outbreak counties along the China-Myanmar border. Parasit Vectors 2024; 17:91. [PMID: 38414050 PMCID: PMC10898090 DOI: 10.1186/s13071-024-06124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Over the past two decades, dengue fever (DF) has emerged as a significant arboviral disease in Yunnan province, China, particularly in the China-Myanmar border area. Aedes aegypti, an invasive mosquito species, plays a crucial role in transmitting the dengue virus to the local population. Insecticide-based vector control has been the primary tool employed to combat DF, but the current susceptibility status of Ae. aegypti to commonly used insecticides is unknown. Assessment of Ae. aegypti resistance to pyrethroid insecticides and an understanding of the underlying mechanisms of this resistance in the China-Myanmar border region is of significant strategic importance for effectively controlling the DF epidemic in the area. METHODS Aedes aegypti larvae collected from Ruili and Gengma counties in Yunnan Province were reared to adults in the laboratory and tested for susceptibility to three pyrethroid insecticides (3.20% permethrin, 0.08% lambda-cyhalothrin and 0.20% deltamethrin) by the standard WHO susceptibility bioassay. Genotyping of mutations in the knockdown gene (kdr), namely S989P, V1016G and F1534C, that are responsible for resistance to pyrethroid insecticides was performed using allele-specific PCR methods. A possible association between the observed resistant phenotype and mutations in the voltage-gated sodium channel gene (VGSC) was also studied. RESULTS Aedes aegypti mosquitoes collected from the two counties and reared in the laboratory were resistant to all of the pyrethroids tested, with the exception of Ae. aegypti from Gengma County, which showed sensitivity to 0.20% deltamethrin. The mortality rate of Ae. aegypti from Ruili county exposed to 3.20% permethrin did not differ significantly from that of Ae. aegypti from Gengma County (χ2 = 0.311, P = 0.577). By contrast, the mortality rate of Ae. aegypti from Ruili County exposed to 0.08% lambda-cyhalothrin and 0.20% deltamethrin, respectively, was significantly different from that of Ae. aegypti from Gengma. There was no significant difference in the observed KDT50 of Ae. aegypti from the two counties to various insecticides. Four mutation types and 12 genotypes were detected at three kdr mutation sites. Based on results from all tested Ae. aegypti, the V1016G mutation was the most prevalent kdr mutation (100% prevalence), followed by the S989P mutation (81.6%) and the F1534C mutation (78.9%). The constituent ratio of VGSC gene mutation types was significantly different in Ae. aegypti mosquitoes from Ruili and those Gengma. The triple mutant S989P + V1016G + F1534C was observed in 274 Ae. aegypti mosquitoes (60.8%), with the most common genotype being SP + GG + FC (31.4%). The prevalence of the F1534C mutation was significantly higher in resistant Ae. aegypti from Ruili (odds ratio [OR] 7.43; 95% confidence interval [CI] 1.71-32.29; P = 0.01) and Gengma (OR 9.29; 95% CI 3.38-25.50; P = 0.00) counties than in susceptible Ae. aegypti when exposed to 3.20% permethrin and 0.08% lambda-cyhalothrin, respectively. No significant association was observed in the triple mutation genotypes with the Ae. aegypti population exposed to 3.20% permethrin and 0.20% deltamethrin resistance (P > 0.05), except for Ae. aegypti from Gengma County when exposed to 0.08% lambda-cyhalothrin (OR 2.86; 95% CI 1.20-6.81; P = 0.02). CONCLUSIONS Aedes aegypti from Ruili and Gengma counties have developed resistance to various pyrethroid insecticides. The occurrence of multiple mutant sites in VGSC strongly correlated with the high levels of resistance to pyrethroids in the Ae. aegypti populations, highlighting the need for alternative strategies to manage the spread of resistance. A region-specific control strategy for dengue vectors needs to be implemented in the future based on the status of insecticide resistance and kdr mutations.
Collapse
Affiliation(s)
- Li Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Kemei Zhou
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Jun Shi
- Lincang Center for Disease Control and Prevention, Lincang, China
| | - Yuting Zheng
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Xiaotao Zhao
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Qingyun Du
- Gengma Center for Disease Control and Prevention, Gengma, China
| | - Yingkun Lin
- Dehong Prefecture Center for Disease Control and Prevention, Mangshi, China
| | - Xaioxiong Yin
- Ruili Center for Disease Control and Prevention, Ruili, China
| | - Jinyong Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China.
| | - Xinyu Feng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, China.
- One Health Center, Shanghai Jiao Tong University, The University of Edinburgh, Shanghai, 20025, China.
| |
Collapse
|
2
|
Aung SH, Mon Kyaw AM, Jittamala P, Lawpoolsri S, Soonthornworasiri N, Sriwichai P, Phuanukoonnon S. Efficacy of household Aedes larval control practices in a peri-urban township, Yangon, Myanmar: Implication for entomological surveillance. Heliyon 2023; 9:e18083. [PMID: 37483793 PMCID: PMC10362226 DOI: 10.1016/j.heliyon.2023.e18083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Dengue is a major public health concern in Myanmar. We carried out a cross-sectional study to investigate the efficacy of larval control practices in household water containers, such as the use of the larvicide, temephos, covering the containers with lids and weekly cleaning. We surveyed 300 households in Kaw Hmu Township, a peri-urban community in the Yangon region. We inspected 1,892 water storage containers and 342 non-water storage/household waste containers during the rainy season and 1,866 water storage containers and 287 non-water storage/household waste containers during the dry season. The presence of Aedes larvae and larval control measures were recorded for each container. Results revealed that larval indices were higher than World Health Organization standard indices, and infestations in water storage containers were more common in the rainy season (6.6%) than in the dry season (5.7%). Infestations were also more likely in containers of non-potable water (9.1%-9.9%) than in containers of potable water (0.1%-0.7%). Two thirds of water storage containers were treated with temephos. Containers most likely to contain Aedes larvae were cement basins and barrels. Temephos was effective in controlling infestations in cement basins, while weekly cleaning was effective in controlling infestations in barrels. Combinations of control methods were more effective at larval control than the use of a single method. Larval infestations were high (18.4% in the rainy season) in unused containers and in containers which were household waste. Overall, we found a complex interaction between household water use, container characteristics, and larval control practices. Larval control strategies in Myanmar will require ongoing entomological surveillance and the identification of key breeding sources and optimal control methods.
Collapse
Affiliation(s)
- Soe Htet Aung
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Aye Mon Mon Kyaw
- Central Epidemiology Unit, Department of Public Health, Yangon Region, Myanmar
| | - Podjanee Jittamala
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Suparat Phuanukoonnon
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Thailand
| |
Collapse
|
3
|
Knockdown Resistance Mutations in the Voltage-Gated Sodium Channel of Aedes aegypti (Diptera: Culicidae) in Myanmar. INSECTS 2022; 13:insects13040322. [PMID: 35447764 PMCID: PMC9028491 DOI: 10.3390/insects13040322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosquitoes confer resistance to pyrethroid insecticides. Analysis of kdr mutations in Aedes aegypti mosquitoes collected from five different townships in the Mandalay area, Myanmar, revealed high levels of validated kdr mutations in domains II and III of vgsc. Moreover, high frequencies of concurrent kdr mutations were also detected. The results of this study suggest that kdr mutations associated with pyrethroid resistance are widespread in the Ae. aegypti population of the study area. Our results provide a valuable molecular basis to understand the pyrethroid resistance status of the Ae. aegypti population in the area and underscore the need for an effective vector control program in Myanmar. Abstract Aedes aegypti is an important mosquito vector transmitting diverse arboviral diseases in Myanmar. Pyrethroid insecticides have been widely used in Myanmar as the key mosquito control measure, but the efforts are constrained by increasing resistance. Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) are related to pyrethroid resistance in Ae. aegypti. We analyzed the patterns and distributions of the kdr mutations in Ae. aegypti in the Mandalay area of Myanmar. The segment 6 regions of domains II and III of vgsc were separately amplified from individual Ae. aegypti genomic DNA via polymerase chain reaction. The amplified gene fragments were sequenced. High proportions of three major kdr mutations, including S989P (54.8%), V1016G (73.6%), and F1534C (69.5%), were detected in the vgsc of Ae. aegypti from all studied areas. Other kdr mutations, T1520I and F1534L, were also found. These kdr mutations represent 11 distinct haplotypes of the vgsc population. The S989P/V1016G/F1534C was the most prevalent, followed by S989P/V1016V and V1016G/F1534C. A quadruple mutation, S989P/V1016G/T1520I/F1534C, was also identified. High frequencies of concurrent kdr mutations were observed in vgsc of Myanmar Ae. aegypti, suggesting a high level of pyrethroid resistance in the population. These findings underscore the need for an effective vector control program in Myanmar.
Collapse
|
4
|
Lun X, Wang Y, Zhao C, Wu H, Zhu C, Ma D, Xu M, Wang J, Liu Q, Xu L, Meng F. Epidemiological characteristics and temporal-spatial analysis of overseas imported dengue fever cases in outbreak provinces of China, 2005–2019. Infect Dis Poverty 2022; 11:12. [PMID: 35074010 PMCID: PMC8785556 DOI: 10.1186/s40249-022-00937-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/11/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
Background
Overseas imported dengue fever is an important factor in local outbreaks of this disease in the mainland of China. To better prevent and control such local outbreaks, the epidemiological characteristics and temporal-spatial distribution of overseas imported dengue fever cases in provincial-level administrative divisions (PLADs) where dengue fever is outbreak in the mainland of China were explored.
Methods
Using the Chinese National Notifiable Infectious Disease Reporting Information System (CNNDS), we identified overseas imported dengue fever cases in dengue fever outbreak areas in the mainland of China from 2005 to 2019 to draw the epidemic curve and population characteristic distribution of overseas imported cases in each PLAD. Based on spatial autocorrelation analysis of ArcGIS 10.5 and temporal-spatial scanning analysis of SaTScan 9.5, we analyzed the temporal-spatial distribution of overseas imported dengue fever in dengue fever outbreak areas in the mainland of China.
Results
A total of 11,407 imported cases, mainly from Southeast Asia, were recorded from 2005 to 2019 in these 13 PLADs. Of which 62.1% were imported into Yunnan and Guangdong Provinces. Among the imported cases, there were more males than females, mainly from the 21–50 age group. The hot spots were concentrated in parts of Yunnan, Guangdong and Fujian Provinces. We found the cluster of infected areas were expanding northward.
Conclusions
Based on the analysis of overseas imported dengue cases in 13 PLADs of the mainland of China from 2005 to 2019, we obtained the epidemiological characteristics and spatial distribution of imported dengue cases. Border controls need to pay attention to key population sectors, such as 21–50 years old men and education of key populations on dengue prevention. There is a need to improve the awareness of the prevention and control of imported cases in border areas. At the same time, northern regions cannot relax their vigilance.
Graphical Abstract
Collapse
|
5
|
Naw H, Su MNC, Võ TC, Lê HG, Kang JM, Jun H, Mya YY, Myint MK, Lee J, Sohn WM, Kim TS, Na BK. Overall Prevalence and Distribution of Knockdown Resistance (kdr) Mutations in Aedes aegypti from Mandalay Region, Myanmar. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 58:709-714. [PMID: 33412777 PMCID: PMC7806427 DOI: 10.3347/kjp.2020.58.6.709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosquitoes confer resistance to insecticides. Although insecticide resistance has been suspected to be widespread in the natural population of Aedes aegypti in Myanmar, only limited information is currently available. The overall prevalence and distribution of kdr mutations was analyzed in Ae. aegypti from Mandalay areas, Myanmar. Sequence analysis of the VGSC in Ae. aegypti from Myanmar revealed amino acid mutations at 13 and 11 positions in domains II and III of VGSC, respectively. High frequencies of S989P (68.6%), V1016G (73.5%), and F1534C (40.1%) were found in domains II and III. T1520I was also found, but the frequency was low (8.1%). The frequency of S989P/V1016G was high (55.0%), and the frequencies of V1016G/F1534C and S989P/V1016G/F1534C were also high at 30.1% and 23.5%, respectively. Novel mutations in domain II (L963Q, M976I, V977A, M994T, L995F, V996M/A, D998N, V999A, N1013D, and F1020S) and domain III (K1514R, Y1523H, V1529A, F1534L, F1537S, V1546A, F1551S, G1581D, and K1584R) were also identified. These results collectively suggest that high frequencies of kdr mutations were identified in Myanmar Ae. aegypti, indicating a high level of insecticide resistance.
Collapse
Affiliation(s)
- Haung Naw
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Mya Nilar Chaw Su
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Hojong Jun
- Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Korea
| | - Yi Yi Mya
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Jinyoung Lee
- Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|