1
|
Kapoor M, Ventura ES, Walsh A, Sokolov A, George N, Kumari S, Provart NJ, Cole B, Libault M, Tickle T, Warren WC, Koltes JE, Papatheodorou I, Ware D, Harrison PW, Elsik C, Yordanova G, Burdett T, Tuggle CK. Building a FAIR data ecosystem for incorporating single-cell transcriptomics data into agricultural genome to phenome research. Front Genet 2024; 15:1460351. [PMID: 39678381 PMCID: PMC11638175 DOI: 10.3389/fgene.2024.1460351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The agriculture genomics community has numerous data submission standards available, but the standards for describing and storing single-cell (SC, e.g., scRNA- seq) data are comparatively underdeveloped. Methods To bridge this gap, we leveraged recent advancements in human genomics infrastructure, such as the integration of the Human Cell Atlas Data Portal with Terra, a secure, scalable, open-source platform for biomedical researchers to access data, run analysis tools, and collaborate. In parallel, the Single Cell Expression Atlas at EMBL-EBI offers a comprehensive data ingestion portal for high-throughput sequencing datasets, including plants, protists, and animals (including humans). Developing data tools connecting these resources would offer significant advantages to the agricultural genomics community. The FAANG data portal at EMBL-EBI emphasizes delivering rich metadata and highly accurate and reliable annotation of farmed animals but is not computationally linked to either of these resources. Results Herein, we describe a pilot-scale project that determines whether the current FAANG metadata standards for livestock can be used to ingest scRNA-seq datasets into Terra in a manner consistent with HCA Data Portal standards. Importantly, rich scRNA-seq metadata can now be brokered through the FAANG data portal using a semi-automated process, thereby avoiding the need for substantial expert curation. We have further extended the functionality of this tool so that validated and ingested SC files within the HCA Data Portal are transferred to Terra for further analysis. In addition, we verified data ingestion into Terra, hosted on Azure, and demonstrated the use of a workflow to analyze the first ingested porcine scRNA-seq dataset. Additionally, we have also developed prototype tools to visualize the output of scRNA-seq analyses on genome browsers to compare gene expression patterns across tissues and cell populations. This JBrowse tool now features distinct tracks, showcasing PBMC scRNA-seq alongside two bulk RNA-seq experiments. Discussion We intend to further build upon these existing tools to construct a scientist-friendly data resource and analytical ecosystem based on Findable, Accessible, Interoperable, and Reusable (FAIR) SC principles to facilitate SC-level genomic analysis through data ingestion, storage, retrieval, re-use, visualization, and comparative annotation across agricultural species.
Collapse
Affiliation(s)
- Muskan Kapoor
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Enrique Sapena Ventura
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Amy Walsh
- Animal Science Research Center, Division of Animal Science and Division of Plant Science and Technology, University of Missouri-Columbia, Columbia, MO, United States
| | - Alexey Sokolov
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Nicholas J. Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Benjamin Cole
- Lawrence Berkeley National Laboratory, DOE-Joint Genome Institute, Berkeley, CA, United States
| | - Marc Libault
- Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Timothy Tickle
- The Broad Institute of MIT and Harvard, Data Sciences Platform, Cambridge, MA, United States
| | - Wesley C. Warren
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, United States
| | - James E. Koltes
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Irene Papatheodorou
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- U.S. Department of Agriculture, Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Peter W. Harrison
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Christine Elsik
- Animal Science Research Center, Division of Animal Science and Division of Plant Science and Technology, University of Missouri-Columbia, Columbia, MO, United States
| | - Galabina Yordanova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Tony Burdett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Christopher K. Tuggle
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Kalyanasundaram S, Lefol Y, Gundersen S, Rognes T, Alsøe L, Nilsen HL, Hovig E, Sandve GK, Domanska D. hGSuite HyperBrowser: A web-based toolkit for hierarchical metadata-informed analysis of genomic tracks. PLoS One 2023; 18:e0286330. [PMID: 37467208 DOI: 10.1371/journal.pone.0286330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 07/21/2023] Open
Abstract
Many high-throughput sequencing datasets can be represented as objects with coordinates along a reference genome. Currently, biological investigations often involve a large number of such datasets, for example representing different cell types or epigenetic factors. Drawing overall conclusions from a large collection of results for individual datasets may be challenging and time-consuming. Meaningful interpretation often requires the results to be aggregated according to metadata that represents biological characteristics of interest. In this light, we here propose the hierarchical Genomic Suite HyperBrowser (hGSuite), an open-source extension to the GSuite HyperBrowser platform, which aims to provide a means for extracting key results from an aggregated collection of high-throughput DNA sequencing data. The hGSuite utilizes a metadata-informed data cube to calculate various statistics across the multiple dimensions of the datasets. With this work, we show that the hGSuite and its associated data cube methodology offers a quick and accessible way for exploratory analysis of large genomic datasets. The web-based toolkit named hGsuite Hyperbrowser is available at https://hyperbrowser.uio.no/hgsuite under a GPLv3 license.
Collapse
Affiliation(s)
- Sumana Kalyanasundaram
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Yohan Lefol
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, University Hospital, Oslo, Norway
| | - Sveinung Gundersen
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Microbiology, University Hospital, Oslo, Norway
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Lene Alsøe
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, University Hospital, Oslo, Norway
| | - Hilde Loge Nilsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, University Hospital, Oslo, Norway
| | - Eivind Hovig
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Geir Kjetil Sandve
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Diana Domanska
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Sheffield NC, LeRoy NJ, Khoroshevskyi O. Challenges to sharing sample metadata in computational genomics. Front Genet 2023; 14:1154198. [PMID: 37287537 PMCID: PMC10243526 DOI: 10.3389/fgene.2023.1154198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Nathan C. Sheffield
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, United States
- School of Data Science, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Nathan J. LeRoy
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Oleksandr Khoroshevskyi
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
4
|
Licata L, Via A, Turina P, Babbi G, Benevenuta S, Carta C, Casadio R, Cicconardi A, Facchiano A, Fariselli P, Giordano D, Isidori F, Marabotti A, Martelli PL, Pascarella S, Pinelli M, Pippucci T, Russo R, Savojardo C, Scafuri B, Valeriani L, Capriotti E. Resources and tools for rare disease variant interpretation. Front Mol Biosci 2023; 10:1169109. [PMID: 37234922 PMCID: PMC10206239 DOI: 10.3389/fmolb.2023.1169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Collectively, rare genetic disorders affect a substantial portion of the world's population. In most cases, those affected face difficulties in receiving a clinical diagnosis and genetic characterization. The understanding of the molecular mechanisms of these diseases and the development of therapeutic treatments for patients are also challenging. However, the application of recent advancements in genome sequencing/analysis technologies and computer-aided tools for predicting phenotype-genotype associations can bring significant benefits to this field. In this review, we highlight the most relevant online resources and computational tools for genome interpretation that can enhance the diagnosis, clinical management, and development of treatments for rare disorders. Our focus is on resources for interpreting single nucleotide variants. Additionally, we present use cases for interpreting genetic variants in clinical settings and review the limitations of these results and prediction tools. Finally, we have compiled a curated set of core resources and tools for analyzing rare disease genomes. Such resources and tools can be utilized to develop standardized protocols that will enhance the accuracy and effectiveness of rare disease diagnosis.
Collapse
Affiliation(s)
- Luana Licata
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Allegra Via
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Roma, Italy
| | - Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Claudio Carta
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Cicconardi
- Department of Physics, University of Genova, Genova, Italy
- Italiano di Tecnologia—IIT, Genova, Italy
| | - Angelo Facchiano
- National Research Council, Institute of Food Science, Avellino, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Deborah Giordano
- National Research Council, Institute of Food Science, Avellino, Italy
| | - Federica Isidori
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | - Pier Luigi Martelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Roma, Italy
| | - Michele Pinelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Castrense Savojardo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Bernardina Scafuri
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | | | - Emidio Capriotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Cano MA, Tsueng G, Zhou X, Xin J, Hughes LD, Mullen JL, Su AI, Wu C. Schema Playground: a tool for authoring, extending, and using metadata schemas to improve FAIRness of biomedical data. BMC Bioinformatics 2023; 24:159. [PMID: 37081398 PMCID: PMC10116472 DOI: 10.1186/s12859-023-05258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Biomedical researchers are strongly encouraged to make their research outputs more Findable, Accessible, Interoperable, and Reusable (FAIR). While many biomedical research outputs are more readily accessible through open data efforts, finding relevant outputs remains a significant challenge. Schema.org is a metadata vocabulary standardization project that enables web content creators to make their content more FAIR. Leveraging Schema.org could benefit biomedical research resource providers, but it can be challenging to apply Schema.org standards to biomedical research outputs. We created an online browser-based tool that empowers researchers and repository developers to utilize Schema.org or other biomedical schema projects. RESULTS Our browser-based tool includes features which can help address many of the barriers towards Schema.org-compliance such as: The ability to easily browse for relevant Schema.org classes, the ability to extend and customize a class to be more suitable for biomedical research outputs, the ability to create data validation to ensure adherence of a research output to a customized class, and the ability to register a custom class to our schema registry enabling others to search and re-use it. We demonstrate the use of our tool with the creation of the Outbreak.info schema-a large multi-class schema for harmonizing various COVID-19 related resources. CONCLUSIONS We have created a browser-based tool to empower biomedical research resource providers to leverage Schema.org classes to make their research outputs more FAIR.
Collapse
Affiliation(s)
| | | | | | - Jiwen Xin
- The Scripps Research Institute, San Diego, USA
| | | | | | - Andrew I Su
- The Scripps Research Institute, San Diego, USA
| | - Chunlei Wu
- The Scripps Research Institute, San Diego, USA
| |
Collapse
|
6
|
Yao E, Blake VC, Cooper L, Wight CP, Michel S, Cagirici HB, Lazo GR, Birkett CL, Waring DJ, Jannink JL, Holmes I, Waters AJ, Eickholt DP, Sen TZ. GrainGenes: a data-rich repository for small grains genetics and genomics. Database (Oxford) 2022; 2022:6591224. [PMID: 35616118 PMCID: PMC9216595 DOI: 10.1093/database/baac034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 05/16/2023]
Abstract
As one of the US Department of Agriculture-Agricultural Research Service flagship databases, GrainGenes (https://wheat.pw.usda.gov) serves the data and community needs of globally distributed small grains researchers for the genetic improvement of the Triticeae family and Avena species that include wheat, barley, rye and oat. GrainGenes accomplishes its mission by continually enriching its cross-linked data content following the findable, accessible, interoperable and reusable principles, enhancing and maintaining an intuitive web interface, creating tools to enable easy data access and establishing data connections within and between GrainGenes and other biological databases to facilitate knowledge discovery. GrainGenes operates within the biological database community, collaborates with curators and genome sequencing groups and contributes to the AgBioData Consortium and the International Wheat Initiative through the Wheat Information System (WheatIS). Interactive and linked content is paramount for successful biological databases and GrainGenes now has 2917 manually curated gene records, including 289 genes and 254 alleles from the Wheat Gene Catalogue (WGC). There are >4.8 million gene models in 51 genome browser assemblies, 6273 quantitative trait loci and >1.4 million genetic loci on 4756 genetic and physical maps contained within 443 mapping sets, complete with standardized metadata. Most notably, 50 new genome browsers that include outputs from the Wheat and Barley PanGenome projects have been created. We provide an example of an expression quantitative trait loci track on the International Wheat Genome Sequencing Consortium Chinese Spring wheat browser to demonstrate how genome browser tracks can be adapted for different data types. To help users benefit more from its data, GrainGenes created four tutorials available on YouTube. GrainGenes is executing its vision of service by continuously responding to the needs of the global small grains community by creating a centralized, long-term, interconnected data repository. Database URL:https://wheat.pw.usda.gov.
Collapse
Affiliation(s)
- Eric Yao
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
- Department of Bioengineering, University of California, Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Victoria C Blake
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
- Department of Plant Sciences and Plant Pathology, Montana State University, 119 Plant Biosciences Building, Bozeman, MT 59717, USA
| | - Laurel Cooper
- Department of Botany and Plant Pathology, Oregon State University, 1500 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Charlene P Wight
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Steve Michel
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - H Busra Cagirici
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Gerard R Lazo
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Clay L Birkett
- United States Department of Agriculture—Agricultural Research Service, Robert Holley Center, 538 Tower Rd., Ithaca, NY 14853, USA
| | - David J Waring
- Section of Plant Breeding and Genetics, Cornell University, Bradfield Hall, 306 Tower Rd, Ithaca, NY 14853, USA
| | - Jean-Luc Jannink
- United States Department of Agriculture—Agricultural Research Service, Robert Holley Center, 538 Tower Rd., Ithaca, NY 14853, USA
- Section of Plant Breeding and Genetics, Cornell University, Bradfield Hall, 306 Tower Rd, Ithaca, NY 14853, USA
| | - Ian Holmes
- Department of Bioengineering, University of California, Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Amanda J Waters
- PepsiCo R&D, 1991 Upper Buford Circle, 210 Borlaug Hall, St. Paul, MN 55108, USA
| | - David P Eickholt
- PepsiCo R&D, 1991 Upper Buford Circle, 210 Borlaug Hall, St. Paul, MN 55108, USA
| | - Taner Z Sen
- *Corresponding author: Tel: +1 (510) 559-5982; Fax: + 1 (510) 559-5963;
| |
Collapse
|
7
|
van der Velde KJ, Singh G, Kaliyaperumal R, Liao X, de Ridder S, Rebers S, Kerstens HHD, de Andrade F, van Reeuwijk J, De Gruyter FE, Hiltemann S, Ligtvoet M, Weiss MM, van Deutekom HWM, Jansen AML, Stubbs AP, Vissers LELM, Laros JFJ, van Enckevort E, Stemkens D, 't Hoen PAC, Beliën JAM, van Gijn ME, Swertz MA. FAIR Genomes metadata schema promoting Next Generation Sequencing data reuse in Dutch healthcare and research. Sci Data 2022; 9:169. [PMID: 35418585 PMCID: PMC9008059 DOI: 10.1038/s41597-022-01265-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
The genomes of thousands of individuals are profiled within Dutch healthcare and research each year. However, this valuable genomic data, associated clinical data and consent are captured in different ways and stored across many systems and organizations. This makes it difficult to discover rare disease patients, reuse data for personalized medicine and establish research cohorts based on specific parameters. FAIR Genomes aims to enable NGS data reuse by developing metadata standards for the data descriptions needed to FAIRify genomic data while also addressing ELSI issues. We developed a semantic schema of essential data elements harmonized with international FAIR initiatives. The FAIR Genomes schema v1.1 contains 110 elements in 9 modules. It reuses common ontologies such as NCIT, DUO and EDAM, only introducing new terms when necessary. The schema is represented by a YAML file that can be transformed into templates for data entry software (EDC) and programmatic interfaces (JSON, RDF) to ease genomic data sharing in research and healthcare. The schema, documentation and MOLGENIS reference implementation are available at https://fairgenomes.org .
Collapse
Affiliation(s)
- K Joeri van der Velde
- University of Groningen and University Medical Center Groningen, Genomics Coordination Center, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- University of Groningen and University Medical Center Groningen, Department of Genetics, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gurnoor Singh
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Center for Molecular and Biomolecular Informatics, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Rajaram Kaliyaperumal
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - XiaoFeng Liao
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Center for Molecular and Biomolecular Informatics, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Sander de Ridder
- Amsterdam University Medical Center, University of Amsterdam, Department of Pathology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Susanne Rebers
- The Netherlands Cancer Institute, Division of Molecular Pathology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Hindrik H D Kerstens
- Prinses Máxima Center for Pediatric Oncology, Kemmeren group, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Fernanda de Andrade
- University of Groningen and University Medical Center Groningen, Genomics Coordination Center, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Jeroen van Reeuwijk
- Radboud University Medical Center, Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Fini E De Gruyter
- University Medical Center Utrecht, Department of Genetics, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Saskia Hiltemann
- Erasmus Medical Center, Department of Pathology, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Maarten Ligtvoet
- Nictiz - Dutch competence centre for electronic exchange of health and care information, Oude Middenweg 55, 2491 AC, The Hague, The Netherlands
| | - Marjan M Weiss
- Radboud University Medical Center, Department of Human Genetics, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Hanneke W M van Deutekom
- University Medical Center Utrecht, Department of Genetics, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Anne M L Jansen
- University Medical Center Utrecht, Department of Pathology, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Andrew P Stubbs
- Erasmus Medical Center, Department of Pathology, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Lisenka E L M Vissers
- Radboud University Medical Center, Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Jeroen F J Laros
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Leiden University Medical Center, Department of Clinical Genetics, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Rijksinstituut voor Volksgezondheid en Milieu, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Esther van Enckevort
- University of Groningen and University Medical Center Groningen, Genomics Coordination Center, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Daphne Stemkens
- VSOP - Patient Alliance for Rare and Genetic Diseases The Netherlands, Koninginnelaan 23, 3762 DA, Soest, The Netherlands
| | - Peter A C 't Hoen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Center for Molecular and Biomolecular Informatics, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Jeroen A M Beliën
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Pathology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Mariëlle E van Gijn
- University of Groningen and University Medical Center Groningen, Department of Genetics, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Morris A Swertz
- University of Groningen and University Medical Center Groningen, Genomics Coordination Center, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- University of Groningen and University Medical Center Groningen, Department of Genetics, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|