1
|
Cao X, Mao K, Zhang Y, Yang M, Liu H, Wang X, Hao L. Integration of proteomics and network toxicology reveals the mechanism of mercury chloride induced hepatotoxicity, in mice and HepG2 cells. Food Chem Toxicol 2023; 177:113820. [PMID: 37172713 DOI: 10.1016/j.fct.2023.113820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Mercury is one heavy metal toxin that could cause severe health impairments. Mercury exposure has become a global environmental issue. Mercury chloride (HgCl2) is one of mercury's main chemical forms, but it lacks detailed hepatotoxicity data. The present study aimed to investigate the mechanism of hepatotoxicity induced by HgCl2 through proteomics and network toxicology at the animal and cellular levels. HgCl2 showed apparent hepatotoxicity after being administrated with C57BL/6 mice (16 mg/kg.bw, oral once a day, 28 days) and HepG2 cells (100 μmol/L, 12 h). Otherwise, oxidative stress, mitochondrial dysfunction and inflammatory infiltration play an important role in HgCl2-induced hepatotoxicity. The differentially expressed proteins (DEPs) after HgCl2 treatment and enriched pathways were obtained through proteomics and network toxicology. Western blot and RT-qPCR results showed Acyl-CoA thioesterase 1 (ACOT1), Acyl-CoA synthetase short chain family member 3 (ACSS3), Epidermal growth factor receptor (EGFR), Apolipoprotein B (APOB), Signal transducer and activator of transcription 3 (STAT3), Alanine--glyoxylate aminotransferase (AGXT), cytochrome P450 3A5(CYP3A5), CYP2E1 and CYP1A2 may be the major biomarkers for HgCl2-induced hepatotoxicity, which involved chemical carcinogenesis, fatty acid metabolism, CYPs-mediated metabolism, GSH metabolism and others. Therefore, this study can provide scientific evidence for the biomarkers and mechanism of HgCl2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xin Cao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Kanmin Mao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Yanan Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Miao Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xinzheng Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
2
|
Fu K, Song Y, Zhang D, Xu M, Wu R, Xiong X, Liu X, Wu L, Guo Y, Zhou Y, Li X, Wang Z. Determination of 18 Trace Elements in 10 Batches of the Tibetan Medicine Qishiwei Zhenzhu Pills by Direct Inductively Coupled Plasma-Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8548378. [PMID: 35069770 PMCID: PMC8776486 DOI: 10.1155/2022/8548378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 01/18/2023]
Abstract
Qishiwei Zhenzhu pills (QSW) was first recorded in the Tibetan medicine classic Si Bu Yi Dian and has been used to treat "Baimai" disease, stroke, paralysis, hemiplegia, cerebral hemorrhage, and other diseases till today. This prescription contains more than 70 medicines including myrobalan, pearl, agate, opal, bezoar, coral, musk, gold, silver, and a mineral mixture Zuotai. As a result, QSW contains a large amount of mercury, copper, lead, and other trace elements. The aim of this study was to determine the 18 trace elements (lithium, beryllium, scandium, vanadium, chromium, manganese, cobalt, nickel, copper, arsenic, strontium, argentum, cadmium, cesium, barium, lead, aurum, and mercury) in 10 batches of QSW produced by 5 pharmaceutical companies (Ganlu Tibetan Medicine Co., Ltd. has 6 different batches) by direct inductively coupled plasma-mass spectrometry (ICP-MS). ICP-MS is a rapid, sensitive, accurate methodology allowing the determination of 18 elements simultaneously. The results showed that each element had an excellent linear relationship in the corresponding mass concentration range. The results showed that the rank order of the elements in QSW was copper > mercury > lead from high to low, with the mass fraction higher than 6000 μg/kg; the mass fractions of argentum, arsenic, manganese, aurum, strontium, barium, chromium, and nickel were in the range of 33-1034 μg/kg; and the mass fractions of vanadium, cobalt, lithium, beryllium, cadmium, scandium, and cesium were lower than 10 μg/kg. The reproducibility from the same manufacturer (Tibet Ganlu Tibetan Medicine Co., Ltd.) was relatively high; however, the element amounts among 5 manufacturers were different, which could affect the efficacy and toxicity of QSW. All in all, ICP-MS can be used as an effective tool for the analysis of trace elements in QSW and standard quality control needs to be enforced across different manufactures.
Collapse
Affiliation(s)
- Ke Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yinglian Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dewei Zhang
- Wanzhou Institute for Drug and Food Control, Chongqing 404000, China
| | - Min Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruixia Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueqing Xiong
- Wanzhou Institute for Drug and Food Control, Chongqing 404000, China
| | - Xianwu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Guo
- Wanzhou Institute for Drug and Food Control, Chongqing 404000, China
| | - You Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoli Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|