1
|
Berger E, Brandes G, Kaiser O, Reifenrath J, Lenarz T, Wissel K, Durisin M. Induction of cell death by sodium hexachloroplatinate (IV) in the HEI-OC1 cell line, primary rat spiral ganglion cells and rat organ of Corti explants. PLoS One 2024; 19:e0307973. [PMID: 39058727 PMCID: PMC11280268 DOI: 10.1371/journal.pone.0307973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Although cochlear implants have become a well-established method for patients with sensory neural hearing loss, clinical results indicate that in some cases, corrosion of electrode contacts leads to high impedance that interferes with successful stimulation of the auditory nerve. As it is unclear whether corrosion products induce cell damage, we focused on cell culture models of the organ of Corti cell line (HEI-OC1), rat spiral ganglion cells (SGC) and rat organ of Corti explant (OCex) cultivated from neonatal rat cochleae to characterize the cytotoxicity of sodium hexachloroplatinate (IV) (Na2(PtCl6)). The oxidative activity in HEI-OC1 cells decreased with increasing Na2(PtCl6) concentrations between 8 and 16 ng/μl, and live cell staining with Calcein acetoxymethyl/Ethidium homodimer III revealed an increasing number of cells with disrupted membranes. Ultrastructural evidence of mitophagy followed by necroptosis was detected. Additionally, exposure of the SGC to 15-35 ng/μl Na2(PtCl6) dose-dependently reduced neuronal survival and neuritogenesis, as determined by neurofilament antigen staining. In parallel, staining glial cells and fibroblasts with specific antibodies confirmed the dose-dependent induction of cell death by Na2(PtCl6). Exposure of the OCex to 25-45 ng/μl Na2(PtCl6) resulted in severe concentration-dependent hair cell loss. Our data show for the first time that Na2(PtCl6) induces cell death in a concentration-dependent manner in inner ear cell types and tissues.
Collapse
Affiliation(s)
- Elisabeth Berger
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Gudrun Brandes
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Odett Kaiser
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Janin Reifenrath
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Clinic for Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Kirsten Wissel
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Martin Durisin
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- University Clinic of Otolaryngology, Head and Neck Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
4
|
Krämer-Albers EM, Werner HB. Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles. Nat Rev Neurosci 2023:10.1038/s41583-023-00711-y. [PMID: 37258632 DOI: 10.1038/s41583-023-00711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Extracellular vesicles (EVs) have recently emerged as versatile elements of cell communication in the nervous system, mediating tissue homeostasis. EVs influence the physiology of their target cells via horizontal transfer of molecular cargo between cells and by triggering signalling pathways. In this Review, we discuss recent work revealing that EVs mediate interactions between oligodendrocytes and neurons, which are relevant for maintaining the structural integrity of axons. In response to neuronal activity, myelinating oligodendrocytes release EVs, which are internalized by neurons and provide axons with key factors that improve axonal transport, stress resistance and energy homeostasis. Glia-to-neuron transfer of EVs is thus a crucial facet of axonal preservation. When glial support is impaired, axonal integrity is progressively lost, as observed in myelin-related disorders, other neurodegenerative diseases and with normal ageing. We highlight the mechanisms that oligodendroglial EVs use to sustain axonal integrity and function.
Collapse
Affiliation(s)
- Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
5
|
Carrillo-Garcia J, Herrera-Fernández V, Serra SA, Rubio-Moscardo F, Vogel-Gonzalez M, Doñate-Macian P, Hevia CF, Pujades C, Valverde MA. The mechanosensitive Piezo1 channel controls endosome trafficking for an efficient cytokinetic abscission. SCIENCE ADVANCES 2021; 7:eabi7785. [PMID: 34714681 PMCID: PMC8555900 DOI: 10.1126/sciadv.abi7785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Mechanical forces are exerted throughout cytokinesis, the final step of cell division. Yet, how forces are transduced and affect the signaling dynamics of cytokinetic proteins remains poorly characterized. We now show that the mechanosensitive Piezo1 channel is activated at the intercellular bridge (ICB) connecting daughter cells to regulate abscission. Inhibition of Piezo1 caused multinucleation both in vitro and in vivo. Piezo1 positioning at the ICB during cytokinesis depends on Pacsin3. Pharmacological and genetic inhibition of Piezo1 or Pacsin3 resulted in mislocation of Rab11-family-interacting protein 3 (Rab11-FIP3) endosomes, apoptosis-linked gene 2-interacting protein X (ALIX), and endosomal sorting complex required for transport III (ESCRT-III). Furthermore, we identified FIP3 as the link between Piezo1-generated Ca2+ signals and ALIX delivery to the ICB, where ALIX recruits the ESCRT-III component charged multivesicular body protein 4B, which promotes abscission. These results provide a different view of how mechanical forces participate in cytokinesis and identify Piezo1 as a key modulator of endosome trafficking.
Collapse
Affiliation(s)
- Julia Carrillo-Garcia
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Selma A. Serra
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Fanny Rubio-Moscardo
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Marina Vogel-Gonzalez
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Pablo Doñate-Macian
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Miguel A. Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
6
|
Ng DCH, Ho UY, Grounds MD. Cilia, Centrosomes and Skeletal Muscle. Int J Mol Sci 2021; 22:9605. [PMID: 34502512 PMCID: PMC8431768 DOI: 10.3390/ijms22179605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are non-motile, cell cycle-associated organelles that can be found on most vertebrate cell types. Comprised of microtubule bundles organised into an axoneme and anchored by a mature centriole or basal body, primary cilia are dynamic signalling platforms that are intimately involved in cellular responses to their extracellular milieu. Defects in ciliogenesis or dysfunction in cilia signalling underlie a host of developmental disorders collectively referred to as ciliopathies, reinforcing important roles for cilia in human health. Whilst primary cilia have long been recognised to be present in striated muscle, their role in muscle is not well understood. However, recent studies indicate important contributions, particularly in skeletal muscle, that have to date remained underappreciated. Here, we explore recent revelations that the sensory and signalling functions of cilia on muscle progenitors regulate cell cycle progression, trigger differentiation and maintain a commitment to myogenesis. Cilia disassembly is initiated during myoblast fusion. However, the remnants of primary cilia persist in multi-nucleated myotubes, and we discuss their potential role in late-stage differentiation and myofiber formation. Reciprocal interactions between cilia and the extracellular matrix (ECM) microenvironment described for other tissues may also inform on parallel interactions in skeletal muscle. We also discuss emerging evidence that cilia on fibroblasts/fibro-adipogenic progenitors and myofibroblasts may influence cell fate in both a cell autonomous and non-autonomous manner with critical consequences for skeletal muscle ageing and repair in response to injury and disease. This review addresses the enigmatic but emerging role of primary cilia in satellite cells in myoblasts and myofibers during myogenesis, as well as the wider tissue microenvironment required for skeletal muscle formation and homeostasis.
Collapse
Affiliation(s)
- Dominic C. H. Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Uda Y. Ho
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Miranda D. Grounds
- School of Human Sciences, Faculty of Medicine, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Frühbeis C, Kuo-Elsner WP, Müller C, Barth K, Peris L, Tenzer S, Möbius W, Werner HB, Nave KA, Fröhlich D, Krämer-Albers EM. Oligodendrocytes support axonal transport and maintenance via exosome secretion. PLoS Biol 2020; 18:e3000621. [PMID: 33351792 PMCID: PMC7787684 DOI: 10.1371/journal.pbio.3000621] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2021] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons extend long axons that require maintenance and are susceptible to degeneration. Long-term integrity of axons depends on intrinsic mechanisms including axonal transport and extrinsic support from adjacent glial cells. The mechanisms of support provided by myelinating oligodendrocytes to underlying axons are only partly understood. Oligodendrocytes release extracellular vesicles (EVs) with properties of exosomes, which upon delivery to neurons improve neuronal viability in vitro. Here, we show that oligodendroglial exosome secretion is impaired in 2 mouse mutants exhibiting secondary axonal degeneration due to oligodendrocyte-specific gene defects. Wild-type oligodendroglial exosomes support neurons by improving the metabolic state and promoting axonal transport in nutrient-deprived neurons. Mutant oligodendrocytes release fewer exosomes, which share a common signature of underrepresented proteins. Notably, mutant exosomes lack the ability to support nutrient-deprived neurons and to promote axonal transport. Together, these findings indicate that glia-to-neuron exosome transfer promotes neuronal long-term maintenance by facilitating axonal transport, providing a novel mechanistic link between myelin diseases and secondary loss of axonal integrity. The long-term integrity of neuronal axons depends on intrinsic mechanisms such as axonal transport and on extrinsic support from adjacent glial cells. This study shows that genetic defects in glia that affect axonal integrity impair the secretion of oligodendrocyte exosomes and their ability to support nutrient-deprived neurons and promote axonal transport.
Collapse
Affiliation(s)
- Carsten Frühbeis
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Wen Ping Kuo-Elsner
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Christina Müller
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kerstin Barth
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Leticia Peris
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm, U1216, Grenoble, France
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Dominik Fröhlich
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, Johannes Gutenberg University of Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
8
|
Arbo B, Cechinel L, Palazzo R, Siqueira I. Endosomal dysfunction impacts extracellular vesicle release: Central role in Aβ pathology. Ageing Res Rev 2020; 58:101006. [PMID: 31891813 DOI: 10.1016/j.arr.2019.101006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 01/04/2023]
Abstract
Alzheimer's Disease (AD) is characterized by progressive loss of cognitive abilities; senile plaques represent the major histopathological findings. Amyloid precursor protein (APP) processing machinery, and its product amyloid-beta (Aβ) peptide, have been found in extracellular vesicles (EVs), specifically exosomes, which allows for Aβ peptide aggregation and subsequent senile plaques deposition. We review the APP processing imbalance in EVs, autophagic and endosomal pathways in AD. Increased intraluminal vesicle (ILV) production and exosome release appear to counteract the endosomal dysfunction of APP processing; however, this process results in elevated amyloidogenic processing of APP and augmented senile plaque deposition. Several players related to APP processing and dysfunctional endosomal-lysosomal-exosomal (and other EVs) pathway are described, and the interconnected systems are discussed. The components Arc, p75, Rab11 and retromer complex emerge as candidates for key convergent mechanisms that lead to increased EVs loaded with APP machinery and Aβ levels, in atrophy and damage of basal forebrain cholinergic neurons in AD.
Collapse
|
9
|
Yin Q, Ji X, Lv R, Pei JJ, Du Y, Shen C, Hou X. Targetting Exosomes as a New Biomarker and Therapeutic Approach for Alzheimer's Disease. Clin Interv Aging 2020; 15:195-205. [PMID: 32103922 PMCID: PMC7025655 DOI: 10.2147/cia.s240400] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that mainly occurs in old age and involves progressive cognitive impairment. AD has become a major global issue for public health, with approximately 24 million people currently affected by the disease. Estimates indicted that this number will quadruple by 2050. Because of the high incidence of AD, there is an urgent need to develop new strategies to diagnose and treat AD. Many recent studies have indicated the multiple, yet somewhat controversial, roles of exosomes in AD. Although the underlying mechanisms by which exosomes play a role in AD are still unknown, current evidence suggests that exosomes can carry and spread toxic amyloid-beta, and hyperphosphorylated tau, between cells, and then induce apoptosis, thus contributing to the loss of neurons. In addition, exosomes appear to possess the ability to reduce brain amyloid-beta, and tau hyperphosphorylation, and transfer neuroprotective substances between neural cells. The accumulating data brings hope that the application of exosomes may be helpful for early diagnostics and the identification of new therapeutic targets for AD. Here, we summarized the various roles of exosomes, and how they might relate to the pathogenesis of AD. We also highlight the potential application of exosomes as a therapeutic option in AD therapy.
Collapse
Affiliation(s)
- Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Xiaojuan Ji
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing 100035, People's Republic of China
| | - Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Jin-Jing Pei
- Stress Research Institute, Stockholm University, Stockholm 10691, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Chao Shen
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xunyao Hou
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| |
Collapse
|
10
|
Herzberg D, Strobel P, Müller H, Meneses C, Werner M, Bustamante H. Proteomic profiling of proteins in the dorsal horn of the spinal cord in dairy cows with chronic lameness. PLoS One 2020; 15:e0228134. [PMID: 31990932 PMCID: PMC6986711 DOI: 10.1371/journal.pone.0228134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic lameness affects bovine welfare and has a negative economic impact in dairy industry. Moreover, due to the translational gap between traditional pain models and new drugs development for treating chronic pain states, naturally occurring painful diseases could be a potential translational tool for chronic pain research. We therefore employed liquid chromatography tandem mass spectrometry (LC-MS/MS) to stablish the proteomic profile of the spinal cord samples from lumbar segments (L2-L4) of chronic lame dairy cows. Data were validated and quantified through software tool (Scaffold® v 4.0) using output data from two search engines (SEQUEST® and X-Tandem®). Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis was performed to detect proteins interactions. LC-MS/MS identified a total amount of 177 proteins; of which 129 proteins were able to be quantified. Lame cows showed a strong upregulation of interacting proteins with chaperone and stress functions such as Hsp70 (p < 0.006), Hsc70 (p < 0.0079), Hsp90 (p < 0.015), STIP (p > 0.0018) and Grp78 (p <0.0068), and interacting proteins associated to glycolytic pathway such as; γ-enolase (p < 0.0095), α-enolase (p < 0.013) and hexokinase-1 (p < 0.028). It was not possible to establish a clear network of interaction in several upregulated proteins in lame cows. Non-interacting proteins were mainly associated to redox process and cytoskeletal organization. The most relevant down regulated protein in lame cows was myelin basic protein (MBP) (p < 0.02). Chronic inflammatory lameness in cows is associated to increased expression of stress proteins with chaperone, metabolism, redox and structural functions. A state of endoplasmic reticulum stress and unfolded protein response (UPR) might explain the changes in protein expression in lame cows; however, further studies need to be performed in order to confirm these findings.
Collapse
Affiliation(s)
- Daniel Herzberg
- Veterinary Clinical Sciences Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
- * E-mail: (HB); (DH)
| | - Pablo Strobel
- Animal Science Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Heine Müller
- Veterinary Clinical Sciences Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Constanza Meneses
- Comparative Biomedical Science Graduate Program, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina, United States of America
| | - Marianne Werner
- Animal Science Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Hedie Bustamante
- Veterinary Clinical Sciences Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
- * E-mail: (HB); (DH)
| |
Collapse
|
11
|
Lyon MS, Milligan C. Extracellular heat shock proteins in neurodegenerative diseases: New perspectives. Neurosci Lett 2019; 711:134462. [PMID: 31476356 DOI: 10.1016/j.neulet.2019.134462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 01/20/2023]
Abstract
One pathological hallmark of neurodegenerative diseases and CNS trauma is accumulation of insoluble, hydrophobic molecules and protein aggregations found both within and outside cells. These may be the consequences of an inadequate or overburdened cellular response to stresses resulting from potentially toxic changes in extra- and intracellular environments. The upregulated expression of heat shock proteins (HSPs) is one example of a highly conserved cellular response to both internal and external stress. Intracellularly these proteins act as chaperones, playing vital roles in the folding of nascent polypeptides, the translocation of proteins between subcellular locations, and the disaggregation of misfolded or aggregated proteins in an attempt to maintain cellular proteostasis during both homeostatic and stressful conditions. While the predominant study of the HSPs has focused on their intracellular chaperone functions, it remains unclear if all neuronal populations can mount a complete stress response. Alternately, it is now well established that some members of this family of proteins can be secreted by nearby, non-neuronal cells to act in the extracellular environment. This review addresses the current literature detailing the use of exogenous and extracellular HSPs in the treatment of cellular and animal models of neurodegenerative disease. These findings offer a new measure of therapeutic potential to the HSPs, but obstacles must be overcome before they can be efficiently used in a clinical setting.
Collapse
Affiliation(s)
- Miles S Lyon
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
12
|
Farias J, Sotelo JR, Sotelo‐Silveira J. Toward Axonal System Biology: Genome Wide Views of Local mRNA Translation. Proteomics 2019; 19:e1900054. [DOI: 10.1002/pmic.201900054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Joaquina Farias
- Departamento de Proteínas y Ácidos NucleicosInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
- Departamento de GenómicaInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
| | - José Roberto Sotelo
- Departamento de Proteínas y Ácidos NucleicosInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
| | - José Sotelo‐Silveira
- Departamento de GenómicaInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
- Sección Biología CelularFacultad de Ciencias, Universidad de la República Montevideo CP 11400 Uruguay
| |
Collapse
|
13
|
McArdle A, Pollock N, Staunton CA, Jackson MJ. Aberrant redox signalling and stress response in age-related muscle decline: Role in inter- and intra-cellular signalling. Free Radic Biol Med 2019; 132:50-57. [PMID: 30508577 PMCID: PMC6709668 DOI: 10.1016/j.freeradbiomed.2018.11.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Age-associated frailty is predominantly due to loss of muscle mass and function. The loss of muscle mass is also associated with a greater loss of muscle strength, suggesting that the remaining muscle fibres are weaker than those of adults. The mechanisms by which muscle is lost with age are unclear, but in this review we aim to pull together various strands of evidence to explain how muscle contractions support proteostasis in non-muscle tissues, particularly focussed on the production and potential transfer of Heat Shock Proteins (HSPs) and how this may fail during ageing, Furthermore we will identify logical approaches, based on this hypothesis, by which muscle loss in ageing may be reduced. Skeletal muscle generates superoxide and nitric oxide at rest and this generation is increased by contractile activity. In adults, this increased generation of reactive oxygen and nitrogen species (RONS) activate redox-sensitive transcription factors such as nuclear factor κB (NFκB), activator protein-1 (AP1) and heat shock factor 1 (HSF1), resulting in increases in cytoprotective proteins such as the superoxide dismutases, catalase and heat shock proteins that prevent oxidative damage to tissues and facilitate remodelling and proteostasis in both an intra- and inter-cellular manner. During ageing, the ability of skeletal muscle from aged organisms to respond to an increase in ROS generation by increased expression of cytoprotective proteins through activation of redox-sensitive transcription factors is severely attenuated. This age-related lack of physiological adaptations to the ROS induced by contractile activity appears to contribute to a loss of ROS homeostasis, increased oxidative damage and age-related dysfunction in skeletal muscle and potentially other tissues.
Collapse
Affiliation(s)
- Anne McArdle
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, United Kingdom.
| | - Natalie Pollock
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, United Kingdom
| | - Caroline A Staunton
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, United Kingdom
| | - Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, United Kingdom
| |
Collapse
|
14
|
Meng Y, Sun J, Wang X, Hu T, Ma Y, Kong C, Piao H, Yu T, Zhang G. Exosomes: A Promising Avenue for the Diagnosis of Breast Cancer. Technol Cancer Res Treat 2019; 18:1533033818821421. [PMID: 30760122 PMCID: PMC6373987 DOI: 10.1177/1533033818821421] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/01/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022] Open
Abstract
Currently, despite the advances in individualized treatment, breast cancer still remains the deadliest form of cancer in women. Diagnostic, prognostic, and therapy-predictive methods are mainly based on the evaluation of tumor tissue samples and are aimed to improve the overall therapeutic level. Therefore, the exploration of a series of circulating biomarkers, which serve as the information source of tumors and could be obtained by peripheral blood samples, represents a high field of interest. Apart from classical biomarkers, exosomes, which are nanovesicles, are emerging as an accessible and efficient source of cell information. The purpose of this review is to summarize the peculiarities of the presently available breast cancer exosomal biomarkers; the review also provides the prediction of a multitude of potential target genes of exosomal microRNAs using 4 databases.
Collapse
Affiliation(s)
- Yiming Meng
- Central laboratory, Cancer Hospital of China Medical University, Shenyang, China
| | - Jing Sun
- Central laboratory, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaonan Wang
- Department of Immunology, China Medical University, Shenyang, China
| | - Tingting Hu
- Department of Blood Bank, Cancer Hospital of China Medical University, Shenyang, China
| | - Yushu Ma
- Central laboratory, Cancer Hospital of China Medical University, Shenyang, China
| | - Cuicui Kong
- Central laboratory, Cancer Hospital of China Medical University, Shenyang, China
| | - Haozhe Piao
- Department of Medical Image, Cancer Hospital of China Medical University, Shenyang, China
| | - Tao Yu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Guirong Zhang
- Central laboratory, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
|
16
|
|
17
|
Gainer H, House S, Kim DS, Chin H, Pant HC. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins. Cell Mol Neurobiol 2017; 37:475-486. [PMID: 27207029 DOI: 10.1007/s10571-016-0382-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022]
Abstract
When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.
Collapse
Affiliation(s)
- Harold Gainer
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| | - Shirley House
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Dong Sun Kim
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Anatomy, College of Medicine, Kyungbuk National University, Daegu, South Korea
| | - Hemin Chin
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Division of Extramural Research, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Harish C Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| |
Collapse
|
18
|
Xiao T, Zhang W, Jiao B, Pan CZ, Liu X, Shen L. The role of exosomes in the pathogenesis of Alzheimer' disease. Transl Neurodegener 2017; 6:3. [PMID: 28184302 PMCID: PMC5289036 DOI: 10.1186/s40035-017-0072-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Exosomes are small vesicles secreted by most cell types including neurons that function in intercellular communication through transfer of their cargo or encapsulate and eliminate unnecessary cellular components and therefore have a broad impact on nerve development, activation and regeneration. In addition, exosomes have been observed to be involved in spreading pathological misfolded proteins, thereby leading to the onset and propagation of disease. Alzheimer disease (AD) is the most common form of dementia and characterized by two types of lesions: amyloid plaques and neurofibrillary tangles. Accumulating evidence has demonstrated that exosomes are associated with amyloid precursor (APP) and Tau proteins and play a controversial role in Alzheimer’s disease process. In this review, we will discuss the role of exosomes in the metabolism and secretion of APP and Tau proteins and their subsequent impact on AD pathogenesis.
Collapse
Affiliation(s)
- Tingting Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chu-Zheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|