1
|
Pryce J, Pilotte N, Menze B, Sirois AR, Zulch M, Agbor JP, Williams SA, Wondji CS, Reimer L. Integrated xenosurveillance of Loa loa, Wuchereria bancrofti, Mansonella perstans and Plasmodium falciparum using mosquito carcasses and faeces: A pilot study in Cameroon. PLoS Negl Trop Dis 2022; 16:e0010868. [PMID: 36322515 PMCID: PMC9629651 DOI: 10.1371/journal.pntd.0010868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Community presence of loiasis must be determined before mass drug administration programmes for lymphatic filariasis and onchocerciasis can be implemented. However, taking human blood samples for loiasis surveillance is invasive and operationally challenging. A xenosurveillance approach based on the molecular screening of mosquitoes and their excreta/feces (E/F) for Loa loa DNA may provide a non-invasive method for detecting the community presence of loiasis. METHODS We collected 770 wild mosquitoes during a pilot study in a known loiasis transmission area in Mbalmayo, Cameroon. Of these, 376 were preserved immediately while 394 were kept in pools to collect 36-hour E/F samples before processing. Carcasses and E/F were screened for L. loa DNA. To demonstrate this method's potential for integrated disease surveillance, the samples were further tested for Wuchereria bancrofti, Mansonella perstans, and Plasmodium falciparum. RESULTS Despite limited sample numbers, L. loa DNA was detected in eight immediately-stored mosquitoes (2.13%; 95% CI 1.08 to 4.14), one carcass stored after providing E/F (0.25%; 95% CI 0.04 to 1.42), and three E/F samples (estimated prevalence 0.77%; 95% CI 0.15 to 2.23%). M. perstans and P. falciparum DNA were also detected in carcasses and E/F samples, while W. bancrofti DNA was detected in E/F. None of the carcasses positive for filarial worm DNA came from pools that provided a positive E/F sample, supporting the theory that, in incompetent vectors, ingested parasites undergo a rapid, complete expulsion in E/F. CONCLUSIONS Mosquito xenosurveillance may provide a useful tool for the surveillance of loiasis alongside other parasitic diseases.
Collapse
Affiliation(s)
- Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Benjamin Menze
- Centre for Research of Infectious Diseases, Yaoundé, Cameroon
| | - Allison R. Sirois
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Michael Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | | | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Charles S. Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Research of Infectious Diseases, Yaoundé, Cameroon
| | - Lisa Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
2
|
Kumar S, Hol FJH, Pujhari S, Ellington C, Narayanan HV, Li H, Rasgon JL, Prakash M. A microfluidic platform for highly parallel bite by bite profiling of mosquito-borne pathogen transmission. Nat Commun 2021; 12:6018. [PMID: 34650045 PMCID: PMC8516912 DOI: 10.1038/s41467-021-26300-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/03/2021] [Indexed: 01/02/2023] Open
Abstract
Mosquito bites transmit a number of pathogens via salivary droplets deposited during blood-feeding, resulting in potentially fatal diseases. Little is known about the genomic content of these nanodroplets, including the transmission dynamics of live pathogens. Here we introduce Vectorchip, a low-cost, scalable microfluidic platform enabling high-throughput molecular interrogation of individual mosquito bites. We introduce an ultra-thin PDMS membrane which acts as a biting interface to arrays of micro-wells. Freely-behaving mosquitoes deposit saliva droplets by biting into these micro-wells. By modulating membrane thickness, we observe species-dependent differences in mosquito biting capacity, utilizable for selective sample collection. We demonstrate RT-PCR and focus-forming assays on-chip to detect mosquito DNA, Zika virus RNA, as well as quantify infectious Mayaro virus particles transmitted from single mosquito bites. The Vectorchip presents a promising approach for single-bite-resolution laboratory and field characterization of vector-pathogen communities, and could serve as a powerful early warning sentinel for mosquito-borne diseases.
Collapse
Affiliation(s)
- Shailabh Kumar
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Felix J H Hol
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Insect Virus Interactions Unit, Department of Virology, Institut Pasteur, UMR2000, CNRS, Paris, France.,Center for Research and Interdisciplinarity, U1284 INSERM, Université de Paris, Paris, France
| | - Sujit Pujhari
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA, USA.,Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Clayton Ellington
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Hongquan Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Jason L Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Woods Institute for the Environment, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Pilotte N, Cook DA, Pryce J, Zulch MF, Minetti C, Reimer LJ, Williams SA. Laboratory evaluation of molecular xenomonitoring using mosquito and tsetse fly excreta/feces to amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res 2020; 3:1734. [PMID: 32596646 PMCID: PMC7308644 DOI: 10.12688/gatesopenres.13093.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods: Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent and incompetent vector species, and effects of additional blood feedings post parasite-exposure were evaluated. Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR (dPCR)) were also compared, with strengths and weaknesses examined for each. Results: Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent and incompetent vector mosquito species. Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible. However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei. Testing also suggested that dPCR may facilitate detection through its increased sensitivity. Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions: By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible. However, translation of this methodology from the lab to the field will first require field-based pilot studies aimed at assessing the efficacy of E/F screening.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Darren A.N. Cook
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Michael F. Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
4
|
Minetti C, Pilotte N, Zulch M, Canelas T, Tettevi EJ, Veriegh FBD, Osei-Atweneboana MY, Williams SA, Reimer LJ. Field evaluation of DNA detection of human filarial and malaria parasites using mosquito excreta/feces. PLoS Negl Trop Dis 2020; 14:e0008175. [PMID: 32267840 PMCID: PMC7170280 DOI: 10.1371/journal.pntd.0008175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/20/2020] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
We recently developed a superhydrophobic cone-based method for the collection of mosquito excreta/feces (E/F) for the molecular xenomonitoring of vector-borne parasites showing higher throughput compared to the traditional approach. To test its field applicability, we used this platform to detect the presence of filarial and malaria parasites in two villages of Ghana and compared results to those for detection in mosquito carcasses and human blood. We compared the molecular detection of three parasites (Wuchereria bancrofti, Plasmodium falciparum and Mansonella perstans) in mosquito E/F, mosquito carcasses and human blood collected from the same households in two villages in the Savannah Region of the country. We successfully detected the parasite DNA in mosquito E/F from indoor resting mosquitoes, including W. bancrofti which had a very low community prevalence (2.5-3.8%). Detection in the E/F samples was concordant with detection in insect whole carcasses and human blood, and a parasite not vectored by mosquitoes was detected as well.Our approach to collect and test mosquito E/F successfully detected a variety of parasites at varying prevalence in the human population under field conditions, including a pathogen (M. perstans) which is not transmitted by mosquitoes. The method shows promise for further development and applicability for the early detection and surveillance of a variety of pathogens carried in human blood.
Collapse
Affiliation(s)
- Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Michael Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Tiago Canelas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Edward J. Tettevi
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Francis B. D. Veriegh
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Mike Yaw Osei-Atweneboana
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
5
|
Pilotte N, Cook DA, Pryce J, Zulch MF, Minetti C, Reimer LJ, Williams SA. Laboratory evaluation of molecular xenomonitoring using mosquito excreta/feces to amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res 2019; 3:1734. [PMID: 32596646 PMCID: PMC7308644 DOI: 10.12688/gatesopenres.13093.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 03/30/2024] Open
Abstract
Background: Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods: Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent- and incompetent-vector species, and effects of additional blood feedings post parasite-exposure were evaluated. Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR [dPCR]) were also compared, with strengths and weaknesses examined for each. Results: Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent- and incompetent-vector mosquito species. Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible. However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei. Testing also suggested that dPCR may facilitate detection through its increased sensitivity. Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions: By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible. However, translation of this methodology from the lab to the field will first require the completion of field-based pilot studies aimed at assessing the efficacy of E/F screening.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Darren A.N. Cook
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Michael F. Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|