1
|
Laghlali G, Wiest MJ, Karadag D, Warang P, O'Konek JJ, Chang LA, Park SC, Yan V, Farazuddin M, Janczak KW, García-Sastre A, Baker JR, Wong PT, Schotsaert M. Enhanced mucosal SARS-CoV-2 immunity after heterologous intramuscular mRNA prime/intranasal protein boost vaccination with a combination adjuvant. Mol Ther 2024; 32:4448-4466. [PMID: 39489918 PMCID: PMC11638833 DOI: 10.1016/j.ymthe.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime, was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection against SARS-CoV-2.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- Mice
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Administration, Intranasal
- Immunity, Mucosal
- Antibodies, Viral/immunology
- Injections, Intramuscular
- Female
- Immunization, Secondary
- Humans
- Antibodies, Neutralizing/immunology
- Adjuvants, Immunologic/administration & dosage
- mRNA Vaccines/immunology
- Vaccination/methods
- Adjuvants, Vaccine/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
Collapse
Affiliation(s)
- Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Matthew J Wiest
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dilara Karadag
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica J O'Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohammad Farazuddin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katarzyna W Janczak
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James R Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pamela T Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Singh G, García-Bernalt Diego J, Warang P, Park SC, Chang LA, Noureddine M, Laghlali G, Bykov Y, Prellberg M, Yan V, Singh S, Pache L, Cuadrado-Castano S, Webb B, García-Sastre A, Schotsaert M. Outcome of SARS-CoV-2 reinfection depends on genetic background in female mice. Nat Commun 2024; 15:10178. [PMID: 39580470 PMCID: PMC11585546 DOI: 10.1038/s41467-024-54334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
Antigenically distinct SARS-CoV-2 variants increase the reinfection risk for vaccinated and previously exposed population due to antibody neutralization escape. COVID-19 severity depends on many variables, including host immune responses, which differ depending on genetic predisposition. To address this, we perform immune profiling of female mice with different genetic backgrounds -transgenic K18-hACE2 and wild-type 129S1- infected with the severe B.1.351, 30 days after exposure to the milder BA.1 or severe H1N1. Prior BA.1 infection protects against B.1.351-induced morbidity in K18-hACE2 but aggravates disease in 129S1. H1N1 protects against B.1.351-induced morbidity only in 129S1. Enhanced severity in B.1.351 re-infected 129S1 is characterized by an increase of IL-10, IL-1β, IL-18 and IFN-γ, while in K18-hACE2 the cytokine profile resembles naïve mice undergoing their first viral infection. Enhanced pathology during 129S1 reinfection cannot be attributed to weaker adaptive immune responses to BA.1. Infection with BA.1 causes long-term differential remodeling and transcriptional changes in the bronchioalveolar CD11c+ compartment. K18-hACE2 CD11c+ cells show a strong antiviral defense expression profile whereas 129S1 CD11c+ cells present a more pro-inflammatory response upon restimulation. In conclusion, BA.1 induces cross-reactive adaptive immune responses in K18-hACE2 and 129S1, but reinfection outcome correlates with differential CD11c+ cells responses in the alveolar space.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Juan García-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Yonina Bykov
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Prellberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarabjot Singh
- RT-PCR COVID-19 Laboratory, Civil Hospital, Moga, Punjab, India
| | - Lars Pache
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Lipschultz Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brett Webb
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
- Lipschultz Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Laghlali G, Wiest MJ, Karadag D, Warang P, O'Konek JJ, Chang LA, Park S, Farazuddin M, Landers JJ, Janczak KW, García-Sastre A, Baker JR, Wong PT, Schotsaert M. Enhanced mucosal B- and T-cell responses against SARS-CoV-2 after heterologous intramuscular mRNA prime/intranasal protein boost vaccination with a combination adjuvant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587260. [PMID: 38586014 PMCID: PMC10996704 DOI: 10.1101/2024.03.28.587260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection to SARS-CoV-2.
Collapse
|
4
|
Zhao XY, Lempke SL, Urbán Arroyo JC, Brown IG, Yin B, Magaj MM, Holness NK, Smiley J, Redemann S, Ewald SE. iNOS is necessary for GBP-mediated T. gondii clearance in murine macrophages via vacuole nitration and intravacuolar network collapse. Nat Commun 2024; 15:2698. [PMID: 38538595 PMCID: PMC10973475 DOI: 10.1038/s41467-024-46790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.
Collapse
Affiliation(s)
- Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samantha L Lempke
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jan C Urbán Arroyo
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Isabel G Brown
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Magdalena M Magaj
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nadia K Holness
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jamison Smiley
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Zhao XY, Lempke SL, Urbán Arroyo JC, Yin B, Holness NK, Smiley J, Ewald SE. Inducible nitric oxide synthase (iNOS) is necessary for GBP-mediated T. gondii restriction in murine macrophages via vacuole nitration and intravacuolar network collapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.549965. [PMID: 37546987 PMCID: PMC10402109 DOI: 10.1101/2023.07.24.549965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Toxoplasma gondii is an obligate intracellular, protozoan pathogen of rodents and humans. T. gondii's ability to grow within cells and evade cell-autonomous immunity depends on the integrity of the parasitophorous vacuole (PV). Interferon-inducible guanylate binding proteins (GBPs) are central mediators of T. gondii clearance, however, the precise mechanism linking GBP recruitment to the PV and T. gondii restriction is not clear. This knowledge gap is linked to heterogenous GBP-targeting across a population of vacuoles and the lack of tools to selectively purify the intact PV. To identify mediators of parasite clearance associated with GBP2-positive vacuoles, we employed a novel protein discovery tool automated spatially targeted optical micro proteomics (autoSTOMP). This approach identified inducible nitric oxide synthetase (iNOS) enriched at levels similar to the GBPs in infected bone marrow-derived myeloid cells. iNOS expression on myeloid cells was necessary for mice to control T. gondii growth in vivo and survive acute infection. T. gondii infection of IFNγ-primed macrophage was sufficient to robustly induce iNOS expression. iNOS restricted T. gondii infection through nitric oxide synthesis rather than arginine depletion, leading to robust and selective nitration of the PV. Optimal parasite restriction by iNOS and vacuole nitration depended on the chromosome 3 GBPs. Notably, GBP2 recruitment and ruffling of the PV membrane occurred in iNOS knockouts, however, these vacuoles contained dividing parasites. iNOS activity was necessary for the collapse of the intravacuolar network of nanotubular membranes which connects parasites to each other and the host cytosol. Based on these data we conclude reactive nitrogen species generated by iNOS cooperate with the chromosome 3 GBPs to target distinct biology of the PV that are necessary for optimal parasite clearance in murine myeloid cells.
Collapse
Affiliation(s)
- Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jan C. Urbán Arroyo
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nadia K. Holness
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jamison Smiley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Zhang Y, Liao Y, Hang Q, Sun D, Liu Y. GBP2 acts as a member of the interferon signalling pathway in lupus nephritis. BMC Immunol 2022; 23:44. [PMID: 36115937 PMCID: PMC9482746 DOI: 10.1186/s12865-022-00520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Lupus nephritis (LN) is a common and serious clinical manifestation of systemic lupus erythematosus. However, the pathogenesis of LN is not fully understood. The currently available treatments do not cure the disease and appear to have a variety of side effects in the long term. The purpose of this study was to search for key molecules involved in the LN immune response through bioinformatics techniques to provide a reference for LN-specific targeted therapy. The GSE112943 dataset was downloaded from the Gene Expression Omnibus database, and 20 of the samples were selected for analysis. In total, 2330 differentially expressed genes were screened. These genes were intersected with a list of immune genes obtained from the IMMPORT immune database to obtain 128 differentially expressed immune-related genes. Enrichment analysis showed that most of these genes were enriched in the interferon signalling pathway. Gene set enrichment analysis revealed that the sample was significantly enriched for expression of the interferon signalling pathway. Further analysis of the core gene cluster showed that nine genes, GBP2, VCAM1, ADAR, IFITM1, BST2, MX2, IRF5, OAS1 and TRIM22, were involved in the interferon signalling pathway. According to our analysis, the guanylate binding protein 2 (GBP2), interferon regulatory factor 5 and 2′-5′-oligoadenylate synthetase 1 (OAS1) genes are involved in three interferon signalling pathways. At present, we do not know whether GBP2 is associated with LN. Therefore, this study focused on the relationship between GBP2 and LN pathogenesis. We speculate that GBP2 may play a role in the pathogenesis of LN as a member of the interferon signalling pathway. Further immunohistochemical results showed that the expression of GBP2 was increased in the renal tissues of LN patients compared with the control group, confirming this conjecture. In conclusion, GBP2 is a member of the interferon signalling pathway that may have implications for the pathogenesis of LN and serves as a potential biomarker for LN.
Collapse
|
7
|
Massimini M, Bachetti B, Dalle Vedove E, Benvenga A, Di Pierro F, Bernabò N. A Set of Dysregulated Target Genes to Reduce Neuroinflammation at Molecular Level. Int J Mol Sci 2022; 23:ijms23137175. [PMID: 35806178 PMCID: PMC9266409 DOI: 10.3390/ijms23137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Increasing evidence links chronic neurodegenerative diseases with neuroinflammation; it is known that neuroprotective agents are capable of modulating the inflammatory processes, that occur with the onset of neurodegeneration pathologies. Here, with the intention of providing a means for active compounds’ screening, a dysregulation of neuronal inflammatory marker genes was induced and subjected to neuroprotective active principles, with the aim of selecting a set of inflammatory marker genes linked to neurodegenerative diseases. Considering the important role of microglia in neurodegeneration, a murine co-culture of hippocampal cells and inflamed microglia cells was set up. The evaluation of differentially expressed genes and subsequent in silico analysis showed the main dysregulated genes in both cells and the principal inflammatory processes involved in the model. Among the identified genes, a well-defined set was chosen, selecting those in which a role in human neurodegenerative progression in vivo was already defined in literature, matched with the rate of prediction derived from the Principal Component Analysis (PCA) of in vitro treatment-affected genes variation. The obtained panel of dysregulated target genes, including Cxcl9 (Chemokine (C-X-C motif) ligand 9), C4b (Complement Component 4B), Stc1 (Stanniocalcin 1), Abcb1a (ATP Binding Cassette Subfamily B Member 1), Hp (Haptoglobin) and Adm (Adrenomedullin), can be considered an in vitro tool to select old and new active compounds directed to neuroinflammation.
Collapse
Affiliation(s)
- Marcella Massimini
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Benedetta Bachetti
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Elena Dalle Vedove
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Alessia Benvenga
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Francesco Di Pierro
- Velleja Research, 20125 Milan, Italy;
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| |
Collapse
|
8
|
Hay AM, Howie HL, Gorham JD, D'Alessandro A, Spitalnik SL, Hudson KE, Zimring JC. Mouse background genetics in biomedical research: The devil's in the details. Transfusion 2021; 61:3017-3025. [PMID: 34480352 DOI: 10.1111/trf.16628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetically modified mice are used widely to explore mechanisms in most biomedical fields-including transfusion. Concluding that a gene modification is responsible for a phenotypic change assumes no other differences between the gene-modified and wild-type mice besides the targetted gene. STUDY DESIGN AND METHODS To test the hypothesis that the N-terminus of Band3, which regulates metabolism, affects RBC storage biology, RBCs from mice with a modified N-terminus of Band3 were stored under simulated blood bank conditions. All strains of mice were generated with the same initial embryonic stem cells from 129 mice and each strain was backcrossed with C57BL/6 (B6) mice. Both 24-h recoveries post-transfusion and metabolomics were determined for stored RBCs. Genetic profiles of mice were assessed by a high-resolution SNP array. RESULTS RBCs from mice with a mutated Band3 N-terminus had increased lipid oxidation and worse 24-h recoveries, "demonstrating" that Band3 regulates oxidative injury during RBC storage. However, SNP analysis demonstrated variable inheritance of 129 genetic elements between strains. Controlled interbreeding experiments demonstrated that the changes in lipid oxidation and some of the decreased 24-hr recovery were caused by inheritance of a region of chromosome 1 of 129 origin, and not due to the modification of Band 3. SNP genotyping of a panel of commonly used commercially available KO mice showed considerable 129 contamination, despite wild-type B6 mice being listed as the correct control. DISCUSSION Thousands of articles published each year use gene-modified mice, yet genetic background issues are rarely considered. Assessment of such issues are not, but should become, routine norms of murine experimentation.
Collapse
Affiliation(s)
- Ariel M Hay
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Heather L Howie
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - James D Gorham
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Angelo D'Alessandro
- University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - James C Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Marinho FV, Fahel JS, de Araujo ACVSC, Diniz LTS, Gomes MTR, Resende DP, Junqueira-Kipnis AP, Oliveira SC. Guanylate binding proteins contained in the murine chromosome 3 are important to control mycobacterial infection. J Leukoc Biol 2020; 108:1279-1291. [PMID: 32620042 DOI: 10.1002/jlb.4ma0620-526rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/01/2020] [Accepted: 06/21/2020] [Indexed: 11/08/2022] Open
Abstract
Guanylate binding proteins (GBPs) are important effector molecules of autonomous response induced by proinflammatory stimuli, mainly IFNs. The murine GBPs clustered in chromosome 3 (GBPchr3) contains the majority of human homologous GBPs. Despite intense efforts, mycobacterial-promoted diseases are still a major public health problem. However, the combined importance of GBPchr3 during mycobacterial infection has been overlooked. This study addresses the influence of the GBPchr3 in host immunity against mycobacterial infection to elucidate the relationship between cell-intrinsic immunity and triggering of an efficient anti-mycobacterial immune response. Here we show that all GBPchr3 are up-regulated in lungs of mice during Mycobacterium bovis BCG infection, resembling tissue expression of IFN-γ. Mice deficient in GBPchr3 (GBPchr3-/- ) were more susceptible to infection, displaying diminished expression of autophagy-related genes (LC3B, ULK1, and ATG5) in lungs. Additionally, there was reduced proinflammatory cytokine production complementary to diminished numbers of myeloid cells in spleens of GBPchr3-/- . Higher bacterial burden in GBPchr3-/- animals correlated with increased number of tissue granulomas. Furthermore, absence of GBPchr3 hampered activation and production of TNF-α and IL-12 by dendritic cells. Concerning macrophages, lack of GBPs impaired their antimicrobial function, diminishing autophagy induction and intracellular killing efficiency. In contrast, single GBP2 deficiency did not contribute to in vivo bacterial control. In conclusion, this study shows that GBPchr3 are important not only to stimulate cell-intrinsic immunity but also for inducing an efficient immune response to control mycobacterial infection in vivo.
Collapse
Affiliation(s)
- Fabio V Marinho
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Julia S Fahel
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina V S C de Araujo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Lunna T S Diniz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Marco T R Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Danilo P Resende
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goias, Goias, Goiania, Brazil
| | - Ana P Junqueira-Kipnis
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goias, Goias, Goiania, Brazil
| | - Sergio C Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|